Сквозной технологический процесс в машиностроении. Технологические процессы в машиностроении

2.6.1. Общие сведения. В машиностроительном производ-стве технологический процесс (англ. – manufacturing process) – это часть производственного процесса, содержащая целе-направленные действия по изменению и (или) определению состояния предмета труда. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования, сборки.

Основной составной частью технологического процесса является технологическая операция (англ. – operation), вы-полняемая на одном рабочем месте. Она является структур-ной исходной единицей для расчёта времени и денежных за-трат на технологический процесс в целом.

Параллельно существующее понятие «технологический метод» представляет собой совокупность правил, опреде-ляющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, пе-ремещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, уста-новленных безотносительно к наименованию, типоразмеру или исполнения изделия.

2.6.2. Технологическая документация. Технологический документ – это графический или текстовой документ, кото-рый отдельно или в совокупности с другими документами определяет технологический процесс или операцию изго-товления детали.

Оформление технологического документа представляет собой комплекс процедур, необходимых для составления и подготовки технологического документа в соответствии с порядком, установленным на предприятии. К подготовке документа относится его подписание, согласование и т. д.

2.6.3. Комплектность технологических документов. Комплект документов технологического процесса (опера-ции) представляет собой совокупность технологических до-кументов, необходимых и достаточных для выполнения тех-нологического процесса (операции).

Комплект проектной технологической документации – это совокупность технологической документации для проек-тирования и реконструкции предприятия.

Стандартный комплект документов технологического процесса (операции) состоит из комплекта технологических документов, установленных в соответствии с требованиями стандартов государственной системы стандартизации.

2.6.4. Степень детализации технологических процессов. Маршрутное описание технологического процесса представ-ляет собой сокращенное описание всех технологических операций в последовательности их выполнения, но без раз-деления операций на составные элементы (переходы) и без указания режимов обработки.

Режим обработки – это набор условий, при которых реализуется обработка. Основными параметрами, состав-ляющими режим, например обработки резанием, являются глубина резания, то есть толщина срезаемого слоя за один приём; подача (перемещение) инструмента, например, за каждый оборот обрабатываемой детали; скорость резания, предопределяющая степень интенсивности ухода стружки из очага резания; принятый способ отвода тепла из очага ре-зания и ряд других параметров

Маршрутно-операционное описание технологического процесса представляет собой сокращённое изложение техно-логических операций с сохранением их последовательности при полном описании отдельных операций.

2.6.5. Влияние организации производства на технологи-ческие процессы и операции. Технологические процессы по своему составу и глубине проработки отдельных элементов процесса существенно зависят от типа машиностроительно-го производства. Имеются в виду массовое, серийное и еди-ничное производства.

Каждый тип машиностроительного производства имеет свои характерные особенности, определённым образом влияющие на проектируемый технологический процесс. Так, в массовом производстве за каждым станком постоянно за-креплена только одна технологическая операция. Поэтому все составные части проектируемого технологического про-цесса прорабатывают очень подробно, и от рабочих, выпол-няющих каждую операцию, не требуется высокая квалифи-кация. В свою очередь, оборудование в цехе располагают по ходу действий, указанных в технологическом процессе. Этим упрощается передача обрабатываемой детали от стан-ка к станку. Складываются условия для организации поточ-ного (непрерывного) производства. Длительность каждой операции, а также степень равномерной и полной загрузки станков обеспечивают технологическими приёмами, закла-дываемыми в проектируемый технологический процесс. Здесь имеют в виду кратность отрезка времени, затрачивае-мого на каждую операцию, число станков на одну и ту же операцию и т.п.

Однако следует иметь в виду, что полностью загрузить большое количество станков обработкой одной детали мож-но только при достаточно большой программе выпуска продукции. Само собой разумеется, что программа должна быть устойчивой, то есть ориентированной на достаточно длительный период спроса продукции, по крайней мере дос-таточный для самоокупаемости затрат на организацию мас-сового производства.

Одним из основных критериев массового производства является такт выпуска продукции.

Такт выпуска (англ. – production time) – интервал време-ни, через который периодически производится выпуск изде-лий или заготовок определённых наименования, типоразме-ра и исполнения.

Определённое значение имеет также ритм выпуска (англ. – production rate) – количество изделий или заготовок определённых наименований, типоразмеров и исполнения, выпускаемых в единицу времени.

В серийном производстве за каждым станком закреплено больше одной операции, а цех и каждый его участок заняты обработкой нескольких или многих деталей. Но программа выпуска каждой детали мала для того, чтобы организовы-вать поточное производство.

Подбирая номенклатуру деталей для каждого участка, стараются подобрать детали примерно одинаковых габарит-ных размеров со схожей конфигурацией (валы, зубчатые ко-лёса, корпусные детали и т.д.), одинакового материала (сталь, алюминиевые сплавы, магниевые сплавы).

Однородность перечисленных характеристик предопре-деляет сходство технологических процессов. Это позволяет уменьшить разнообразие станков на участке и способствует возможности максимально загрузить станки.

Закрепление за станком нескольких технологических операций предопределяет неизбежность последующей пере-наладки, то есть замены технологической оснастки для того, чтобы перейти к обработке других деталей. Поэтому в се-рийном производстве детали обрабатывают партиями, то есть группами одноименных деталей. Выполнив одну опе-рацию для партии деталей, станок переналаживают для вы-полнения очередной операции.

Чем разнообразнее технологические процессы, выпол-няемые на участке, тем труднее на участке расположить станки в наиболее выгодном порядке. Поэтому в серийном производстве чаще всего представляется целесообразным располагать станки в большем соответствии с последова-тельностью этапов технологического процесса (черновые операции, чистовые, окончательные).

В серийном производстве заняты рабочие главным обра-зом средней квалификации.

По сравнению с массовым производством в серийном производстве увеличен объём так называемого незавершён-ного производства, то есть накапливаются детали, ждущие очередного передвижения к местам дальнейших этапов об-работки. Соответственно, возрастает длительность произ-водственного цикла,

Цикл технологической операции (англ. – operation cycle) – интервал календарного времени от начала до конца перио-дически повторяющейся технологической операции незави-симо от числа одновременно изготовляемых или ремонти-руемых изделий.

Единичное производство характерно тем, что оно ориен-тировано на изготовление чрезвычайно широкой номенкла-туры самых разнообразных деталей, каждая из которых вы-пускается единицами экземпляров. По этой причине все ис-пользуемые средства производства отличаются повышенной универсальностью с применением рабочей силы высокой квалификации. За каждым станком закрепляется максималь-но возможное количество технологических операций.

По принципу единичного производства организованы опытные цехи и заводы, находящиеся в непосредственном распоряжении опытно-конструкторских организаций, заня-тых созданием и разработкой новой продукции.

Наличие высококвалифицированной рабочей силы ис-ключает необходимость подробной детализации, как техно-логических операций, так и технологического процесса в целом. То есть технологический процесс в ряде случаев дос-таточно представлять в виде сокращённого маршрутного описания всех действий, составляющих технологический процесс. Этим сокращается объём работы инженерно-тех-нического персонала на составление технологической доку-ментации, а также в определённой мере компенсируются расходы, связанные с привлечением высококвалифициро-ванной рабочей силы.

В свою очередь, независимо от типа машиностроитель-ного производства, сформировались конкретные наимено-вания технологических процессов.

Единичный технологический процесс изготовления или ремонта изделия одного наименования, типоразмера и ис-полнения, независимо от типа производства.

Типовой технологический процесс изготовления группы изделий с общими конструктивными и технологическими признаками.

Групповой технологический процесс изготовления груп-пы изделий с разными конструктивными, но общими техно-логическими признаками

Типовая технологическая операция, характеризуемая единством содержания и последовательности технологиче-ских переходов для группы изделий с общими конструктив-ными и технологическими признаками.

Групповая технологическая операция совместного изго-товления группы изделий с разными конструктивными, но общими технологическими признаками.

2.7. Технологическая система

2.7.1. Структура технологической системы. В общем случае технологическая система состоит из обрабатывае-мого и обрабатывающего начал, находящихся в техниче-ском окружении, необходимом и достаточном для того, что-бы при вводе энергии реализовывался запланированный тех-нологический процесс.

Структурными основными единицами технологической системы являются следующие её элементы.

Технологическое оборудование (англ. – manufacturing equipment) – средства технологического оснащения, в кото-рых для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическая оснастка. Примерами технологического оборудования являются ли-тейные машины, прессы, станки, печи, гальванические ван-ны, испытательные стенды и т.д.

Технологическая оснастка (англ.– tooling) – средства тех-нологического оснащения, дополняющие технологическое оборудование для выполнения определённой части техно-логического процесса. В состав технологической оснастки входят режущий инструмент и приспособления.

Инструмент (англ. – tool) – технологическая оснастка, предназначенная для воздействия на предмет труда с целью изменения его состояния. Состояние предмета труда опре-деляется при помощи меры и (или) измерительного прибора.

В свою очередь, различают основной инструмент, непо-средственно взаимодействующий с обрабатываемым объек-том (например, резец) и вспомогательный инструмент (на-пример, оправка, несущая на себе этот резец и являющаяся связующим звеном между резцом и местом крепления этого резца на станке).

Приспособление (англ. – fixture) – технологическая осна-стка, предназначенная для установки или направления предмета труда или инструмента при выполнении техноло-гической операции. Фактически приспособление является устройством для расширения технологических возможно-стей применяемого оборудования.

Перечисленные структурные элементы показывают, что термин «технологическая система» по своей сути эквива-лентен понятию «вещественные факторы производитель-ных сил», используемому экономическими теориями при анализе процессов развития общественного производства.

В то же время в машиностроении вещественные факторы производительных сил часто называют средствами техно-логического оснащения (СТО). При этом имеют в виду, что в составе этих средств значатся только технологическое обо-рудование, технологическая оснастка и средства механи-зации и автоматизации реализуемого технологического процесса. Таким образом, инструмент и предмет труда не входят в состав СТО. Тем не менее, при выборе каждого из структурных составляющих системы СТО неизбежно учи-тывают основные факторы, относящиеся и к инструменту, и к предмету труда. Это следует из стандартных рекоменда-ций, касающихся выбора каждого их структурных состав-яющих системы СТО.

а) Выбирают технологическое оборудование на основа-нии анализа подлежащих обработке поверхностей изготов-ляемых деталей и перечня методов обработки, каждый из которых реально может быть использован в рассматривае-мом случае. Выбор наиболее эффективного метода обработ-ки предопределяют технико-экономические и эксплуатаци-онные требования к изготовляемой детали.

Оборудование должно обеспечивать высокопроизводи-теьный процесс за счёт

– одновременной обработки несколькими инструмента-ми;

– одновременной обработки одним инструментом не-скольких деталей (или нескольких поверхностей);

– совмещения нескольких операций.

При этом действия, связанные с контролем геометриче-ских параметров детали, с контролем станка и состоянием обрабатывающего инструмента, а также с коррекцией точ-ности обработки и переналадкой станка стремятся по вре-мени совместить с основным действием, а именно: обработ-кой поверхностей изготавливаемых деталей.

б) Агрегатирование средств технологического оснаще-ния. При частой сменяемости изготовляемой продукции (в среднесерийном и мелкосерийном производствах) необхо-дима быстрая замена состава средств технологического ос-нащения. Быстрота замены и переналадки оснащения ха-рактеризуется понятием «гибкость производства».

Для сокращения времени па переналадку все элементы СТО проектируют и изготовляют, применяя принцип агре-гатирования. То есть все элементы СТО изготовляют в виде унифицированных многоцелевых, и в ряде случаев, обрати-мых модулей

Принцип агрегатирования предполагает выполнение комплекса работ в последовательности:

– анализ планируемых технологических операций с це-лью выявить возможность применения известных типовых методов обработки;

– анализ объектов обработки, классификация их с выде-лением типовых представителей (например, поверхности плоские, криволинейные; детали - болты, гайки и т.д.);

– составление схем рабочих движений обработки и пере-мещения предметов труда;

– разделение конструкций СТО на элементы и узлы обра-тимой конструкции;

– установление необходимых условий связи между эле-ментами и узлами по соответствующей компоновочной схе-ме;

– определение номенклатуры входящих в СТО деталей,-узлов и агрегатов многократного применения;

– издание альбомов и каталогов деталей, узлов и агрега-тов СТО.

Основным критерием целесообразности любых решений по агрегатированию СТО является технико-экономическая эффективность от их создания и практического применения.

в) Комплектуют технологическую оснастку, опираясь на предварительный анализ:

– характеристики изготовляемых деталей (конструкция, размеры, материал, требуемые точность и качество);

– технологических и организационных условий изготов-ления детали (схема ориентации и закрепления детали в зоне обработки);

– оптимизации степени загрузки и интенсивности работы, как самой оснастки, так и используемого оборудования вплоть до условий для непрерывного труда;

– полного соответствия оснастки её целевому назначению и техническим характеристикам применяемого оборудова-ния;

– способности оснастки обеспечивать интенсивность эксплуатации и полную загрузку станка.

В общем случае оснастка может быть выбрана из перечня имеющейся номенклатуры, либо оснастку следует спроекти-ровать и изготовить вновь. Но всегда оснастка должна обес-печивать труд с высокой производительностью.

г) Средства механизации. Выбор этих средств ведут с учётом того, что механизация предполагает главным обра-зом вытеснение ручного труда и замену его машинным тру-дом в тех звеньях, где он до сих пор остаётся как среди ос-новных технологических операций, так и среди операций вспомогательных, зачастую отличающихся большой трудо-ёмкостью и наличием ручной работы. Механизация ведёт к сокращению производственного цикла, повышению произ-водительности труда и к улучшению экономических показа-телей.

При выборе средств механизации учитывают

– плановые сроки и трудоемкость выпуска продукции;

– плановую продолжительность выпуска продукции;

– организационные формы производства в период освое-ния и выпуска продукции.

Выбор средств всегда сопровождается технико-эконо-мическими расчётами затрат на производство в течение все-го периода его реализации.

2.7.2. Роботизация оснастки. По мере развития техники на смену механизации отдельных технологических действий постоянно приходит автоматизация с целью повысить про-изводительность труда и освободить оператора от тяжелых и утомительных операций. В первую очередь это коснулось массового производства, ориентированного на выпуск большого количества однородной продукции, где не требу-ется частых переналадок технологического оснащения. А в малосерийном и серийном производствах темп автоматиза-ции заметно сдерживается из-за высокой стоимости, как са-мих разработок автоматизированных устройств, так и из-за длительности переналадки этих устройств на выпуск оче-редных партий другой продукции. Однако высокий темп

роста производительности станочного оборудования посто-янно ставит вопрос о необходимости сокращать время на выполнение сопутствующих вспомогательных операций, ха-рактеризующихся для оператора трудоёмкостью, утомляе-мостью, плохими условиями труда. Автоматизированное устройство для вспомогательных операций получило назва-ние робот. Соответственно, в машиностроении возникла новая отрасль – робототехника.

Роботы, предназначенные для замены человека на опас-ных для здоровья, физически тяжёлых и утомительных руч-ных работах, получили название промышленные роботы (ПР). Первый ПР появился в США в 1961 году под названи-ем «Рука Эрнста». В нашей стране первый ПР «Универсал-50» разработан в 1969 году.

В 1980 году общий парк ПР в мире составлял около 25 тыс. штук, а через 5 лет их стало в мире около 200 тыс. штук, что свидетельствует об уже тогда возникшей потреб-ности быстрого роста производительности труда.

В зависимости от участия человека в процессе управле-ния роботом выделяют группы биотехнических и автоном-ных (автоматических) роботов .

К биотехническим роботам относятся дистанционно управляемые копирующие роботы; роботы, управляемые че-ловеком с пульта управления, и полуавтоматические роботы.

Дистанционно управляемые копирующие роботы снаб-жены задающим органом (например, манипулятором, пол-ностью идентичным исполнительному органу), средствами передачи сигналов прямой и обратной связи и средствами отображения информации для человека-оператора о среде, в которой функционирует робот.

Копирующие роботы выполняются в виде антропо-морфных конструкций, обычно «надеваемых» на руки, ноги или корпус человека. Они служат для воспроизведения дви-жений человека с некоторыми необходимыми усилиями и

имеют иногда несколько десятков степеней подвижности.

Роботы, управляемые человеком с пульта, снабжаются системой рукояток, клавиш или кнопок, связанными с ис-полнительными механизмами, соответствующими каналами по различным обобщённым координатам. На пульте управ-ления устанавливаются средства отображения информации о среде функционирования робота, в том числе и поступаю-щей к человеку по радиоканалу связи.

Полуавтоматический робот характеризуется сочетани-ем ручного и автоматического управления. Он снабжён су-первизорным управлением для вмешательства человека в процесс автономного функционирования робота путём со-общения ему дополнительной информации (указание цели, последовательности действий и т.д.).

Роботы с автономным (или автоматическим) управле-нием обычно подразделяют на производственные и научно-исследовательские роботы, которые после создания и на-ладки в принципе способны функционировать без участия человека.

По областям применения производственные роботы под-разделяют на промышленные, транспортные, строительные, бытовые и т.п.

В зависимости от элементной базы, структуры, функций и служебного назначения роботы подразделяют на три поко-ления.

1) Роботы первого поколения (программные роботы) имеют жёсткую программу действий и характеризуются на-личием элементарной обратной связи с окружающей средой, что вызывает определённые ограничения в их применении.

2) Роботы второго поколения (очувствленные роботы) обладают координацией движения с восприятием. Они при-годны для малоквалифицированного труда при изготовле-нии изделий.

Программа движений робота требует для своей реализа-ции управляющей ЭВМ. Неотъемлемая часть робота второго поколения – наличие алгоритмического и программного обеспечения, предназначенного для обработки сенсорной информации и выработки управляющих воздействий.

3) Роботы третьего поколения – это роботы с искусст-венным интеллектом. Они создают условия для полной за-мены человека в области квалифицированного труда, обла-дают способностью к обучению и адаптации в процессе ре-шения производственных задач. Эти роботы способны по-нимать язык и вести диалог с человеком, формировать в себе модель внешней среды с той или иной степенью детализа-ции, распознавать и анализировать сложные ситуации, фор-мировать понятия, планировать поведение, строить про-граммные движения исполнительной системы и осуществ-лять их надёжную отработку.

Появление роботов различных поколений не означает, что они последовательно приходят на смену друг друга. Ис-ходя их технико-экономических соображений роботы всех поколений находят свою так называемую «социальную» нишу, применительно к которой робот подвергается совер-шенствованию его функциональных назначений.

2.7.3. Техническое окружение. Опыт машиностроения и анализ многочисленных технологических процессов пока-зывает, что, как понятие СТО, так и понятие «технологиче-ская система», будучи вещественным фактором, не являются исчерпывающими, так как не отражают необходимость учи-тывать целый ряд явлений, без учёта которых технологиче-ский процесс не может состояться. По этой причине наряду с понятием «технологическая система» применяется более общее понятие «техническое окружение», которое рассмат-ривается как своеобразная инфраструктура технологическо-го процесса. Она в присутствии материальных веществ и

предметов в полной мере проявляется ещё и определённым свойством материального мира: силовым полем, магнетиз-мом, температурой, интервалом времени, положительным или отрицательным катализатором и другими свойствами материи . В результате структурные вещественные эле-менты, входящие в состав технического окружения (техно-логическое оборудование, технологическая оснастка, инст-румент, приспособления), должны быть способными прояв-лять определенные явления или иные свойства материи, не-обходимые для достижения намеченной цели, а именно: для реализации запланированного технологического процесса. Так, для магнитно-импульсной штамповки комплект техни-ческого окружения должен располагать условиями для воз-никновения вихревых токов достаточной интенсивности, то есть высокой электропроводностью заготовки. Если элек-тропроводность мала, то на поверхность заготовки со сторо-ны индуктора укладывают тонкий слой металла с высокой электропроводностью (алюминий или медь). То есть вводят в техническое окружение дополнительный элемент, способ-ный вызвать дополнительное свойство материи, нужное для реализации проектируемого технологического процесса.

2.7.4. Отладка и настройка технологической системы. Присутствие в технологической системе упомянутых явлений и иных свойств материи представляется возможным рассмат-ривать как внутренние технологии формируемого техничес-кого окружения.

Опробование спроектированных технологических процес-сов, для реализации, которых требуется определённое техни-ческое окружение, всегда связано с необходимой наладкой внутренних технологий. На примере термоимпульсного уда-ления заусенцев это выглядит следующим образом,

Заусенцы образуются на пересечениях поверхностей в процессе механической обработки деталей.

Сущность прогрессивного процесса термоимпульсного удаления заусенцев состоит в том, что деталь с заусенцами помещают в герметизируемую камеру и сжигают там заряд горючей газовой смеси. Возникающий фронт пламени, омы-вая деталь, сжигает заусенцы. Особенность этого технологи-ческого процесса в том, что горючая смесь, как правило, сго-рает быстрее, чем успевают разогреться заусенцы до темпе-ратуры своего воспламенения. Эта особенность – временной период несоответствия скоростей - указывает на недостаточ-ность технического окружения для реализации термоим-пульсного процесса. Практическая применимость этого про-цесса обеспечена внесением в техническое окружение допол-нительного элемента в виде отрицательного катализатора, способного сдержать темп горения топливной смеси на вре-мя, достаточное для разогрева и сжигания заусенцев. Таким катализатором является дополнительно вводимый в камеру азот. Взамен азота сдержать темп горения топлива представ-ляется возможным за счёт дозированного сброса давления, нарастающего в камере по мере горения топливного заряда. Тогда технологическую систему надо дополнить устройством для дозированного сброса давления.

2.7.5. Влияние технологической системы на технологи-ческий процесс. Технологическую систему формируют для реализации конкретного технологического процесса.

В общем случае технологический процесс представляет собой набор способов и действий, результатом которых явля-ется получаемая продукция. В свою очередь, получаемую продукцию оценивают по ряду показателей. Основными из них являются себестоимость, производительность труда

и ряд эксплуатационных показателей (точность, качество, надёжность, степень полезного использования вводимой энергии, конкурентная способность).

2.7.5.1. Себестоимость оценивают по объёму расходов (в денежном выражении), приходящихся на каждую единицу продукции. На первичном этапе расчёта себестоимости бе-рут во внимание так называемую технологическую себе-стоимость, учитывающую только минимально необходимые расходы на производство без каких-либо неизбежных впо-следствии начислений на стоимость продукции. В таком случае структурными основными элементами для расчета технологической себестоимости (С) являются следующие расходы на единицу продукции:

– расходы М на материал для изготовления продукции;

– заработная плата З основному рабочему;

– стоимость И инструмента и необходимых приспособле-ний к нему;

– отчисления А от применяемого оборудования, отнесен-ные к единице продукции;

– стоимость Э энергии, израсходованной на единицу про-дукции;

– отчисления П от стоимости производственной площади, необходимой для создания продукции.

То есть себестоимость С является суммой перечисленных расходов:

С = М + З + И + А + Э + П.

Основной рабочий и производственная площадь не входят в перечень структурных элементов технологической системы, но являются необходимым условием для реализации техноло-гического процесса.

В настоящее время современное машиностроение распо-лагает широким ассортиментом инструмента, технологиче-ского оборудования и видов применяемой энергии. От вы-бора этих структурных элементов технологической системы зависит выбор квалификации основного рабочего (влияние на параметр З) и размеры требуемой производственной площади (показатель П), что в свою очередь предопределя-ется типоразмером требуемого технологического оборудо-вания (показатель А). Таким образом формированием техно-логической системы оказывают существенное влияние на себестоимость С изготовляемой продукции В свою очередь, несколько вариантов технологической системы, отличаю-щихся типами и типоразмерами структурных элементов, для получения одной и той же продукции могут обеспечивать одинаковую себестоимость этой продукции. В этом случае предпочтение отдают тому варианту технологической сис-темы, который сопровождается более высокой производи-тельностью труда.

2.7.5.2. Точность и качество получаемой продукции. В общем случае под точностью понимают степень соответст-вия изготовленной продукции тем условиям и требованиям, которые изложены в документации на изготовление этой продукции. В практике машиностроения степень такого со-ответствия используется в качестве критерия для оценки уровня технологической дисциплины на предприятиях (на-ряду с административной дисциплиной и ответственно-стью).

По мере необходимости понятие точность конкретизи-руют и указывают, например, точность геометрической формы, точность геометрических размеров, точность взаим-ного расположения обработанных поверхностей и т.д.

Диапазон требований, охватываемых понятием качество

обработки, достаточно широкий и многообразный. Напри-мер, при обработке металлов резанием из-за силового воз-действия инструмента на обработанной поверхности детали остаются следы инструмента в виде микронеровностей - шероховатость. Высота шероховатости зависит от инстру-мента и параметров способа резания. По этой высоте судят о качестве обработанной поверхности.

К качеству обработки относят и появления наклепа (то есть повышенной твёрдости на некоторую глубину в тело детали вдоль под обработанной поверхностью), также яв-ляющегося следствием силового воздействия инструмента на обработанную поверхность. Величину наклёпа устанав-ливают, измеряя твёрдость обработанной поверхности.

В машиностроении очень часто все точностные и качест-венные показатели получаемой продукции характеризуют единым общим понятием качество продукции. Широко распространенные в производстве приёмы контроля качества направлены на то, чтобы тиражируемые объекты производст-ва были бы между собой идентичными по основным эксплуа-тационным параметрам и характеристикам. Систематическая бурная созидательная деятельность человечества, как ни странно, замыкается всего лишь на трех создаваемых объек-тах производства. Это – вещество, предмет (устройство) и технология. Исходные для получения объекта материалы и полуфабрикаты характеризуются наличием определенных качественных характеристик, предопределяющих свойства, и количественных параметров, сопутствующих этим свойст-вам.

Соответственно, создаваемый объект тоже получает в ка-ких-то соотношениях определенное число этих характери-стик и свойств, которые получили обобщенные названия – качество и количество. Находясь в создаваемом объекте в определенном соотношении, качество и количество состав-ляют меру, то есть создаваемый объект.

Соотношение между количеством и качеством может изменяться в некотором диапазоне, который в практике на-зывают допуском на отклонения количественных и качест-венных характеристик. Тиражируемые объекты, находящие-ся в пределах этого допуска, считаются идентичными и пригодными для работы в задаваемых эксплуатационных условиях. При выходе параметров из этого допуска исход-ное соотношение качества и количества нарушается и воз-никает новая мера (новый объект). Чаще всего в инженер-ной практике этот новый объект представляет собой брак исправимый, если остается возможность довести объект до требуемой кондиции, или окончательный брак, то есть по-лучен негодный для намеченной цели объект. Во избежание брака и для повышения эксплуатационных свойств вырабо-талась система мероприятий, направленных на контроль ка-чества создаваемых объектов. Сюда вошли технические требования, виды достаточного контроля, стандартизация системы мер, проверок и применяемого технического и тех-нологического оснащения. Сущностью всех этих мероприя-тий является стремление создавать тиражируемые объекты идентичными и способными надежно обеспечивать назна-ченный ресурс работы.

Соответственно вопросу контроля качества стали уделять внимание на всех этапах создания объектов, начиная с про-ектных работ и кончая передачей объектов в эксплуатацию.

Появившаяся в обиходе компьютерная техника дала воз-можность накапливать большие объемы информации (базы данных) и на этапе проектных работ эффективно ее анали-зировать для выбора оптимальных соотношений качествен-ных и количественных параметров у создаваемых объектов. В результате предположительно выявилась возможность расширить функции контроля качества тиражируемой про-дукции, а именно: преобразовать этот контроль в один из

приемов, способствующих созданию объектов с новым уровнем свойств. Здесь имеются в виду свойства, необходи-мые и достаточные, чтобы техническое решение о создании объекта соответствовало нормам, предъявляемым к изобре-тениям.

Широкие возможности компьютерной техники явились основой для мнения о том, что именно компьютерная техни-ка придет на смену творческому коллективу проектных ор-ганизаций, создающих объекты с новым уровнем свойств по сравнению с аналогами.

Однако статистика показывает, что бесспорной оказалась только резко возросшая производительность проектных ра-бот, а количество технических решений, полученных на ос-нове системы автоматического проектирования (САПР) в проектных организациях и закрепляемых патентами на изо-бретение объектов с новым уровнем свойств, заметно мень-ше, чем в организациях, дополнительно располагающих мощной экспериментальной базой. Это объясняется, по крайней мере, двумя основными причинами.

1) Мощность любого банка данных никогда не может быть исчерпывающей, потому что производство как одна из составляющих материального мира под активным воздейст-вием человека развивается постоянно и достаточно стреми-тельно, всегда опережая скорость восполнения банков дан-ных.

2) Новый уровень свойств создаваемого объекта никогда не является простым сложением количественных и качест-венных параметров, характерных для исходных компонент создаваемого объекта. Поэтому предварительные расчетно-теоретические прогнозы, как правило, не подтверждаются экспериментально. Это относится, прежде всего, к тем объ-ектам, новизна которых состоит в качестве, предопреде-ляющем новый принцип действия.

Транскрипт

1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. М. Никитенко, Ю. А. Курганова Технологические процессы в машиностроении Текст лекций для студентов машиностроительных специальностей Ульяновск 2008

2 УДК (075.8) ББК г я 7 Н 93 Рецензенты: генеральный директор, канд.техн.наук, ОАО «Ульяновский НИАТ» В. А. Марковцев, главный специалист прессовых работ ОАО «УАЗ» А. Г. Шанов Утверждено редакционно-издательским советом Ульяновского государственного технического университета в качестве текста лекций Никитенко, В. М. Н 93 Технологические процессы в машиностроении: текст лекций / В.М. Никитенко, Ю. А. Курганова. Ульяновск: УлГТУ, с. ISBN Пособие содержит ряд разделов, необходимых для ознакомления студентов с конструкционными материалами, которые служат для изготовления машин и других технических изделий. В пособии рассмотрены технологические способы производства черных и цветных металлов, изготовление заготовок и деталей машин из металлов и неметаллических материалов литьем, обработкой давлением, сваркой, резанием и другими способами. Для студентов вузов машиностроительных специальностей. Работа подготовлена на кафедре «Материаловедение и обработка металлов давлением» УДК (075.8) ББК 34.4 г я7 ISBN В. М. Никитенко, Ю. А. Курганова, Оформление. УлГТУ, 2008

3 ОГЛАВЛЕНИЕ Введение 5 Раздел 1. Производственный процесс изготовления машины. Конструкционные материалы Глава 1. Теоретические основы технологии машиностроения Лекция 1. Понятие о производственном и технологическом процессах 7 Лекция 2. Служебное назначение машины. Качество машины. 11 Точность деталей. Точность обработки Лекция 3. Рабочая документация технологического процесса 22 Глава 2. Конструкционные материалы, применяемые в машиностроении и приборостроении Лекция 4. Понятие о внутреннем строении металлов и сплавов 25 Лекция 5. Основные свойства металлов и сплавов 34 Лекция 6. Стали. Чугуны. Цветные металлы и сплавы 36 Лекция 7. Неметаллические материалы. Композиционные материалы. 50 Полимеры. Области применения различных материалов Лекция 8. Основы термической обработки 53 Раздел 2. Структура и продукция металлургического и литейного производства Глава 3. Металлургия металлов Лекция 9. Производство чугуна. Производство стали 62 Лекция 10. Особенности производства цветных металлов 68 Глава 4. Технологические процессы литья Лекция 11. Основы литейного производства. Классификация литых заготовок. Способы литья 74 Раздел 3.Технологические процессы обработки пластическим деформированием Глава 5.Основы теории обработки металлов давлением (ОМД) Лекция 12. Сущность и основные способы обработки металлов 88 давлением Лекция 13. Нагрев металла и нагревательные устройства 91 Лекция 14. Технологические операции ОМД 93 Лекция 15. Технико-экономические показатели и критерии выбора рациональных способов ОМД 108 Раздел 4. Сварка, пайка, склеивание материалов Глава 6. Сварочное производство Лекция 16. Сварка давлением 110 3

4 Лекция17. Сварка плавлением 115 Лекция 18. Сварные соединения и швы, сварочные материалы 122 Глава 7. Пайка материалов Лекция19. Сущность процесса и материалы для пайки 129 Лекция 20. Восстановление и упрочнение деталей наплавкой 132 Глава 8. Клеевые соединения Лекция 21. Получение неразъемных соединений склеиванием 135 Раздел 5. Технологические процессы обработки резанием Глава 9. Основы технологии формообразования поверхностей деталей машин и режущие инструменты Лекция 22. Режим резания, геометрия срезаемого слоя, шероховатость 137 поверхности. Лекция 23. Классификация металлорежущих станков 142 Лекция 24. Обработка на металлорежущих станках 144 Лекция 25. Особенности обработки заготовок электрофизическими и электрохимическими методами 160 Глава 10. Отделочная обработка поверхностей Лекция 26. Методы отделочной обработки поверхностей 172 Раздел 6. Производство деталей из неметаллических материалов и металлических порошков Глава 11. Способы изготовления композиционных материалов Лекция 27 Общие сведения о пластмассах. Переработка пластмасс в изделия 181 Лекция 28. Производство деталей из жидких полимеров. Сварка и склеивание 183 пластмасс Лекция 29. Производство изделий из резины 189 Лекция 30. Производство деталей из металлических порошков 191 Лекция 31. Получение материалов на основе полимерных веществ 195 Раздел 7. Технологические процессы сборки Глава 12. Особенности технологического процесса сборки Лекция 32. Содержание процесса сборки и структуры сборочных 200 единиц. Контроль в машиностроении 211 Заключение Библиографический список 212 4

5 Введение Разработка нового изделия в машиностроении сложная комплексная задача, связанная не только с достижением требуемого технического уровня этого изделия, но и с приданием его конструкций таких свойств, которые обеспечивают максимально возможное снижение затрат труда, материалов и энергии на его разработку, изготовление, эксплуатацию и ремонт. Решение этой задачи определяется творческим содружеством создателей новой техники конструкторов и технологов и их взаимодействием на этапах разработки конструкции с его изготовителями и потребителями. В реализации требуемых свойств изделий машиностроения определяющая роль принадлежит методам и средствам производства этих изделий. Детали, узлы и другие компоненты машин чрезвычайно разнообразны, и для их изготовления необходимы материалы с самыми различными свойствами, а также технологические процессы, основанные на разных принципах действия. Многолетняя практика показывает, что в современном машиностроительном производстве не существует универсальных методов обработки, в равной мере эффективных для изготовления различных деталей из разных материалов. Каждый метод обработки имеет свою конкретную область применения, причем эти области нередко пересекаются так, что одна и та же деталь может быть изготовлена различными методами. Поэтому выбор способа изготовления деталей с учетом конкретных производственных условий связан с необходимостью выбора оптимального метода из большого числа возможных, исходя из заданных технико-экономических ограничений как по параметрам изготавливаемой детали, так и по условиям эксплуатации оборудования и инструмента. Целью изучения дисциплины является ознакомление студентов с основами знаний о современном машиностроительном производстве: с видами материалов и способов их производства, с технологическими процессами изготовления деталей машин и сборочными работами. Текст лекций содержит 7 разделов. В первом разделе излагаются основы производственного процесса и его составляющие. Рассматриваются кристаллизация и строение металлов и сплавов, способы их термической обработки, описаны превращения, протекающие в сплавах при их нагреве и охлаждении. Уделено внимание сплавам на основе цветных металлов, свойствам сталей, методам их улучшения, а также неметаллическим, порошковым и композиционным материалам, которые являются перспективными. Во втором разделе рассмотрены основы металлургического и литейного процесса. Внимание сконцентрировано на методах получения и физикохимической переработке конструкционных материалов. Рассмотрены основы современной технологии литейного производства, специальные способы литья и применяемое оборудование для их выплавки. Третий раздел посвящен обработке металлов давлением. Даны представления о влиянии процессов пластического деформирования на структуру металла, на его механические свойства. 5

6 В четвертом разделе рассмотрены вопросы сварочного производства, процессы пайки и получение неразъемных клеевых соединений. Физические основы сварки, ее способы, различные виды оборудования. В пятом разделе описаны основные процессы, протекающие при обработке металлов резанием. Приведены краткие сведения о металлорежущих станках, инструментах, работах, выполняемых на этом оборудовании. Здесь же рассмотрены вопросы электрофизической и электрохимической обработки. В шестом разделе рассматривают получение материалов на основе полимеров. В седьмом разделе рассмотрены технологические процессы сборки, вопросы контроля в машиностроении. Развитие и совершенствование любого производства в настоящее время зависит от знаний инженера и от того, насколько он владеет методами изготовления деталей машин и их сварки. Важным направлением научно - технического процесса является создание и широкое применение новых конструкционных материалов для того, чтобы повысить технический уровень и надежность оборудования с учетом экономических показателей, для этого инженер должен обладать глубокими технологическими знаниями. 6

7 Раздел 1. Производственный процесс изготовления машины. Конструкционные материалы Глава 1. Теоретические основы технологии машиностроения Лекция 1. Понятие о производственном и технологическом процессах Все то, что имеет общество для удовлетворения своих потребностей, связано с использованием или переработкой продуктов природы. Последнее неразрывно связано с необходимостью реализации тех или иных производственных процессов, т. е. в конечном итоге с затратами человеческого труда. В производственный процесс входят все этапы переработки продуктов природы в предметы (машины, строения, материалы и т. п.), необходимые человеку. Так, например, для создания станка необходимо добыть и переработать руду, затем из металла создать заготовки будущих деталей станка, осуществлять этап их переработки, а затем сборки. При создании машины обычно ограничиваются рассмотрением производственных процессов, реализуемых на машиностроительном предприятии. Изделием в машиностроении называют любой предмет или набор предметов, подлежащих изготовлению. Изделием может быть любая машина или ее элементы в сборе, остальные детали в зависимости от того, что является продуктом конечной стадии данного производства. Например, для станкостроительного завода изделием являются станок или автоматическая линия, для завода изготовления крепежных деталей болт, гайка и т. п. Производственным процессом в машиностроении называют совокупность всех этапов, которые проходят полуфабрикаты на пути их превращения в готовую продукцию: металлообрабатывающие станки, литейные машины, кузнечно-прессовое оборудование, приборы и другие. На машиностроительном заводе производственный процесс включает: подготовку и обслуживание средств заготовок, их хранение; различные виды обработки (механическую, термическую и т.д.); сборку изделий и их транспортирование, отделку, окраску и упаковку, хранение готовой продукции. Наилучший результат дает всегда тот производственный процесс, в котором все этапы строго организационно согласованы и экономически обоснованы. Технологическим процессом называют часть производственного процесса, содержащую действия по изменению и последующему определению состояния предмета производства. В результате выполнения технологических процессов изменяются физико-химические свойства материалов, геометрическая форма, размеры и относительное положение элементов деталей, качество поверхности, внешний вид объекта производства и т.д. Технологический процесс выполняют на рабочих местах. Рабочее место представляет собой часть 7

8 цеха, в котором размещено соответствующее оборудование. Технологический процесс состоит из технологических и вспомогательных операций (например, технологический процесс обработки валика состоит из токарных, фрезерных, шлифовальных и других операций). Производственный состав машиностроительного завода. Машиностроительные заводы состоят из отдельных производственных единиц, называемых цехами, и различных устройств. Состав цехов, устройств и сооружений завода определяется объектом выпуска продукции, характером технологических процессов, требованиями к качеству изделий и другими производственными факторами, а также в значительной мере степенью специализации производства и кооперирования завода с другими предприятиями и смежными производствами. Специализация предполагает сосредоточение большого объема выпуска строго определенных видов продукции на каждом предприятии. Кооперирование предусматривает обеспечение заготовками (отливками, поковками, штамповками), комплектующими агрегатами, различными приборами и устройствами, изготовляемыми на других специализированных предприятиях. Если проектируемый завод будет получать отливки в порядке кооперирования, то в его составе не будет литейных цехов. Например, некоторые станкостроительные заводы получают отливки со специализированного литейного завода, снабжающего потребителей литьем в централизованном порядке. Состав энергетических и санитарно-технических устройств завода также может быть различными в зависимости от возможности кооперирования с другими промышленными и коммунальными предприятиями по снабжению электроэнергией, газом, паром, сжатым воздухом, в части устройства транспорта, водопровода, канализации и т. д. Дальнейшее развитие специализации и в связи с этим широкое кооперирование предприятий значительно отразятся на производственной структуре заводов. Во многих случаях в составе машиностроительных заводов не предусматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению крепежных деталей и т. д., так как заготовки, метизы и другие детали поставляются специализированными заводами. Многие заводы массового производства в порядке кооперирования со специализированными заводами также могут снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых машин; например, автомобильные и тракторные заводы готовыми двигателями и др. Состав машиностроительного завода можно разделить на следующие группы: 1) заготовительные цехи (чугунолитейные, сталелитейные, литейные цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечноштамповые и др.); 8

9 2) обрабатывающие цехи (механические, термические, холодной штамповки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и др.); 3) вспомогательные цехи (инструментальные, ремонтно-механические, электроремонтные, модельные, экспериментальные, испытательные и др.); 4) складские устройства (для металла, инструмента, формовочных и шихтовых материалов, принадлежностей и разных материалов для готовых изделий, топлива, моделей и др.); 5) энергетические устройства (электростанция, теплоэлектроцентраль, компрессорные и газогенераторные установки); 6) транспортные устройства; 7) санитарно-технические устройства (отопление, вентиляция, водоснабжение, канализация); 8) общезаводские учреждения и устройства (центральная лаборатория, технологическая лаборатория, центральная измерительная лаборатория, главная контора, проходная контора, медицинский пункт, амбулатория, устройства связи, столовая и др.). Технологической операцией называют законченную часть технологического процесса, выполняемую на одном рабочем месте одним или несколькими рабочими, или одной или несколькими единицами автоматического оборудования. Операция охватывает все действия оборудования и рабочих над одним или несколькими совместно обрабатываемыми (собираемыми) объектами производства. Операция является основным элементом производственного планирования и учета. Трудоемкость производственного планирования и учета. Трудоемкость технологического процесса, число рабочих, обеспечение оборудованием и инструментом определяют по числу операций. К вспомогательным операциям относят контроль деталей, их транспортирование, складирование и другие работы. Технологические операции делят на технологические и вспомогательные переходы, а также на рабочие и вспомогательные ходы. Основным элементом операции является переход. Технологический переход законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой или соединяемых при сборке. При обработке резанием технологический переход представляет собой процесс получения каждой новой поверхности или сочетания поверхностей режущим инструментом. Обработку осуществляют в один или несколько переходов (сверление отверстия обработка в один переход, а получение отверстия тремя последовательно работающими инструментами: сверлом, зенкером, разверткой - обработка в три перехода). Переходы могут совмещаться во времени, например, обработка сразу трех отверстий тремя расточными оправками, или фрезерование трех сторон корпусной детали тремя торцевыми фрезами. 9

10 Вспомогательный переход законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и качества поверхностей, но необходимы для выполнения технологического перехода (например, установка заготовки, ее закрепление, смена режущего инструмента). Переходы могут быть совмещены во времени за счет одновременной обработки нескольких поверхностей детали несколькими режущими инструментами. Их можно выполнять последовательно, параллельно (например, одновременная обработка нескольких поверхностей не агрегатных или многорезцовых станках) и параллельно-последовательно. Рабочим ходом называют законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки. При обработке резанием в результате каждого рабочего хода с поверхности или сочетания поверхностей заготовки снимается один слой материала. Для осуществления обработки заготовку устанавливают и закрепляют с требуемой точностью в приспособлении или на станке, при обработке - на сборочном стенде или другом оборудовании. На станках, обрабатывающих тела вращения, под рабочим ходом понимают непрерывную работу инструмента, например на токарном станке снятие резцом одного слоя стружки непрерывно, на строгальном станке снятие одного слоя металла по всей поверхности. Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений), также применяют понятие рабочего хода, как и при снятии стружки. Вспомогательный ход законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода. Все действия рабочего, совершаемые им при выполнении технологической операции, расчленяются на отдельные приемы. Под приемом понимают законченное действие рабочего. Установом называют часть операции, выполняемую при одном закреплении заготовки (или нескольких одновременно обрабатываемых) на станке или в приспособлении, или собираемой сборочной единицы, так, например, обтачивание вала при закреплении в центрах - первый установ; обтачивание вала после его поворота и закрепления в центрах для обработки другого конца второй установ. При каждом повороте детали на какой-либо угол создается новый установ (при повороте детали необходимо указывать угол поворота: 45, 90, и т. д.) Установленная и закрепленная заготовка может изменять свое положение на станке относительно его рабочих органов под воздействием перемещающих или поворотных устройств, занимая новую позицию. Позицией называется каждое отдельное положение заготовки, занимаемое ею относительно станка при неизменном ее закреплении. 10

11 Производственная программа машиностроительного завода содержит номенклатуру изготавливаемых изделий (с указанием типов и размеров), количество изделий каждого наименования, подлежащих выпуску в течение года, перечень и количество запасных деталей к выпускаемым изделиям. Единичное производство характеризуется выпуском изделий широкой номенклатуры в малом количестве и единичных экземплярах. Изготовление изделий либо совсем не повторяется, либо повторяется через неопределенное время, например: выпуск экспериментальных образцов машин, крупных металлорежущих станков, прессов и т. д. В серийном производстве изделия изготовляют по неизменным чертежам партиями и сериями, которые повторяются через определенные промежутки времени. В зависимости от числа изделий в серии серийное производство разделяют на мелко-, средне- и крупносерийное. Продукцией серийного производства являются машины, выпускаемые в значительном количестве: металлорежущие станки, насосы, компрессоры и т. д. В этом производстве используют высокопроизводительное, универсальное, специализированное и специальное оборудование, универсальные, переналаживаемые быстродействующие приспособления, универсальный и специальный инструмент. Широко применяют станки с ЧПУ, многоцелевые станки. Оборудование располагают по ходу технологического процесса, а часть его по типам станков. На большинстве рабочих мест выполняют периодически повторяющиеся операции, В серийном производстве цикл изготовления продукции короче, чем в единичном производстве. Массовым называется производство большого числа изделий одного и того же типа по неизменным чертежам в течение длительного времени. Продукцией массового производства являются изделия узкой номенклатуры и стандартного типа. В этом производстве на большинстве рабочих мест выполняют только одну закрепленную за ними постоянно повторяющуюся операцию. Оборудования в поточных линиях располагают по ходу технологического процесса. В массовом производстве широко используют специальные станки, станкиавтоматы, автоматические линии и заводы, специальные режущие измерительные инструменты и различные средства автоматизации. Лекция 2. Служебное назначение машины. Качество машины. Точность деталей. Точность обработки Служебное назначение машины. Любая машина создается для удовлетворения определенной потребности человека, которая находит отражение в служебном назначении машины. Создание любой машины является следствием потребности того или иного технологического процесса. Такой подход предопределяет необходимость в четком определении тех функций, которые должна выполнять данная машина, т. е. в определении ее служебного назначения. 11

12 Машина может быть определена как устройство, выполняющее целесообразные механические движения, служащие для преобразования полуфабрикатов в предметы (изделие) или действия необходимые человеку. Технологической машиной называется машина, в которой преобразование материала состоит в изменении его формы, размеров и свойств. К этому классу машин относятся металлорежущие станки, кузнечно-прессовое оборудование и др. Под служебным назначением машины понимается максимально уточненная и четко сформулированная задача, для решения которой предназначается машина. Однако и приведенная формулировка недостаточно развернута, чтобы создать и выпустить станок, отвечающий своему служебному назначению. Ее необходимо дополнить такими данными, как характер и точность заготовок, которые должны поступать на станок, материал режущего инструмента, необходимость или отсутствие необходимости обработки полученных поверхностей на валиках и т. д. В ряде случаев необходимо указать те условия, в которых должны работать машины; например, возможные колебания температуры, влажности и т. д. Опыт машиностроения показывает, что каждая ошибка, допущенная при выявлении и уточнении служебного назначения машины, а также и ее механизмов, не только приводит к созданию недостаточно качественной машины, но и вызывает лишние затраты труда на ее освоение. Нередко недостаточно глубокое изучение и выявление служебного назначения машины порождает излишне жесткие, экономически неоправданные требования к точности и другим показателям качества машины. Каждая машина, как и ее отдельные механизмы, выполняет свое служебное назначение при помощи ряда поверхностей или их сочетаний, принадлежащих деталям машины. Условимся называть такие поверхности или их сочетания исполнительными поверхностями машины или ее механизмов. Действительно, сочетания конических поверхностей переднего конца шпинделя и пиноли задней бабки определяют положение обрабатываемой на станке детали, установленной в центрах, поверхности которых входят в комплекс исполнительных поверхностей. На фланец переднего конца шпинделя монтируется поводковый патрон, через который обрабатываемой детали сообщается вращательное движение. Поверхности резцедержателя определяют положение резцов относительно обрабатываемой детали и непосредственно передают им необходимые для обработки движения. Исполнительными поверхностями зубчатой передачи, рассматриваемой как механизм, являются сочетания боковых рабочих поверхностей зубьев пары зубчатых колес, работающих совместно. Исполнительными поверхностями двигателя внутреннего сгорания, рассматриваемого как механизм, служащего для преобразования тепловой энергии в механическую, являются поверхности поршня и рабочего цилиндра и т. д. 12

13 Основы разработки конструктивных форм машины и ее деталей. После того как выявлено и четко сформулировано служебное назначение машины, выбирают исполнительные поверхности или заменяющие их сочетания поверхностей надлежащей формы. Затем выбирается закон относительного движения исполнительных поверхностей, обеспечивающий выполнение машиной ее служебного назначения, разрабатывается кинематическая схема машины и всех составляющих ее механизмов. На следующем этапе рассчитываются силы, действующие на исполнительных поверхностях машины, и характер их действия. Используя эти данные, рассчитывают величину и характер сил, действующих на каждом из звеньев кинематических цепей машины и её механизмов с учетом действия сил сопротивления (трения, инерции, веса и т. д.). Зная служебное назначение каждого звена кинематических цепей машины или ее механизмов, закон движения, характер, величину действующих на него сил и ряд других факторов (среда, в которой должны работать звенья и т. д.), выбирают материал для каждого звена. Путем расчета определяются конструктивные формы, т. е. превращают их в детали машины. Для того чтобы детали, несущие исполнительные поверхности машины и ее механизмов, а также и все другие, выполняющие функции звеньев ее кинематических цепей, двигались в соответствии с требуемым законом их относительного движения и занимали одни относительно других требуемые положения, их соединяют при помощи различного рода других деталей в виде корпусов, станин, коробок, кронштейнов и т. д., которые называют базирующими деталями. Конструктивные формы каждой детали машины и ее механизмов создаются, исходя из ее служебного назначения в машине, путем ограничения необходимого количества выбранного материала различными поверхностями и их сочетаниями. С точки зрения технологии изготовления будущей детали, например, валика, использование цилиндрических поверхностей более экономично, поэтому для опорных частей валика выбирают две цилиндрические поверхности. С точки технологии механической обработки валика, его целесообразно было бы сделать цилиндрическим одного диаметра на всю длину. Однако с точки зрения монтажа зубчатых колес и их обработки такая конструкция была бы менее экономичной. Исходя из этого, останавливаемся для данных производственных условий на конструкции ступенчатого валика. Выбор поверхностей, которые должны ограничить кусок материала, и придание ему требуемой формы еще не означает, что валик будет правильно выполнять свое служебное назначение в машине. Поверхности, относительно которых определяется положение других поверхностей, принято называть базирующими или, короче, базами. Следовательно, при разработке конструктивных форм детали вначале необходимо создать поверхности, принимаемые за ее базы, тогда все остальные 13

14 поверхности должны занять относительно их положение, требуемое служебным назначением детали в машине. Деталь является пространственным телом, поэтому, у нее должно быть в общем случае, как это следует из теоретической механики, три базирующие поверхности, представляющие собой систему координат. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей, образующих конструктивные формы детали. Таким образом, каждая деталь должна иметь свои системы координат. Как правило, в качестве координатных плоскостей обычно используются поверхности основных баз и их оси. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей детали, при помощи которых создаются ее конструктивные формы (вспомогательные базы, исполнительные и свободные поверхности). Из изложенного следует, что создание конструктивных форм деталей следует разрабатывать, учитывая из их служебное назначение и требования технологии их наиболее экономичного изготовления и монтажа. В соответствии с этим под деталью следует понимать необходимое количество выбранного материала, ограниченного рядом поверхностей или их сочетаний, расположенных одни относительно других (выбранных за базы), исходя из служебного назначения детали в машине и наиболее экономичной технологии изготовления и монтажа. Построение машины осуществляется путем соединения составляющих ее деталей. Базирующая деталь машины должна соединять и обеспечивать требуемые служебным назначением машины относительные положения (расстояния и повороты) всех составляющих машину сборочных единиц и деталей. Соединение деталей и сборочных единиц осуществляется путем приведения в соприкосновение поверхностей основных баз присоединяемой сборочной единицы или детали с вспомогательными базами детали, к которой они присоединяются (базирующей). Следовательно, поверхности основных баз присоединяемой детали и вспомогательных баз присоединяемой детали и вспомогательных баз базирующей детали, к которой они присоединяются, являются негативными. Это очень важное обстоятельство, играющее большую роль при разработке конструктивных форм деталей, разработке технологии их изготовления и конструирования приспособлений. Необходимость в правильных геометрических формах поверхностей деталей появляется тогда, когда детали оставляется хотя бы одна степень свободы для выполнения служебного назначения в машине. В подобных случаях между поверхностями основных баз такой детали и вспомогательных баз детали, к которой они присоединяются, возникает трение, порождающее износ сопряженных поверхностей. Износ вызывает, в свою очередь, изменение размеров и положения поверхностей основных и вспомогательных баз сопрягаемых деталей, а, следовательно, изменение расстояний и поворотов этих поверхностей (положения), а тем самым и относительного по- 14

15 ложения и движения деталей. В конечном итоге машина или ее механизмы не смогут выполнять экономично, а иногда и физически свое служебное назначение. Поэтому в дополнение к необходимости получения поверхностей деталей правильной геометрической формы добавляется требование обеспечения требуемой степени их шероховатости и качества поверхностного слоя материала. Одной из задач технологии машиностроения является экономичное получение деталей, имеющих требуемую точность размеров, поворота, геометрической формы поверхностей, требуемую их шероховатость и качество поверхностного слоя материала. Для этого исполнительные поверхности основных и вспомогательных баз деталей, как правило, подвергают обработке. Качество машины. Для того чтобы машина экономично выполняла свое служебное назначение, она должна обладать необходимым для этого качеством. Под качеством машины понимается совокупность ее свойств, определяющих соответствие ее служебному назначению и отличающих машину от других. Качество каждой машины характеризуется рядом методически правильно отработанных показателей, на каждый из которых должна быть установлена количественная величина с допуском на ее отклонения, оправдываемые экономичностью выполнения машиной ее служебного назначения. Система качественных показателей с установленными на них количественными данными и допусками, описывающая служебное назначение машины, получила название технических условий и норм точности на приемку готовой машины. К основным показателям качества машины относятся: стабильность выполнения машиной ее служебного назначения; качество выпускаемой машиной продукции, долговечность физическая, т. е. способность сохранять первоначальное качество во времени; долговечность моральная, или способность экономично выполнять служебное назначение во времени; производительность, безопасность работы; удобство и простота обслуживания управления; уровень шума, коэффициент полезного действия, степень механизации и автоматизации и т. д. Основные технические характеристики и качественные показатели некоторых машин и составляющих их частей, выпускаемых в больших количествах, стандартизованы. Точность обработки. Под точностью обработки понимают степень соответствия обработанной детали техническим требованиям чертежа в отношении точности размеров, формы и расположения поверхностей. Все детали, у которых отклонения показателей точности лежат в пределах, установленных допусков, пригодны для работы. В единичном и мелкосерийном производстве точность деталей получают методом пробных рабочих ходов, т. е. последовательным снятием слоя припуска, сопровождаемым соответствующими измерениями. В условиях мелкосерийного и среднесерийного производства применяют обработку с настройкой станка по первой пробной детали партии или по эталонной детали. В крупносерийном и массовом производствах точность детали обеспечивают методом 15

16 автоматического получения размеров на предварительно настроенных станкахавтоматах, полуавтоматах или автоматических линиях. В условиях автоматизированного производства в станок встраивают наладчики, представляющий собой измерительное и регулировочное устройство, которое в случае выхода размера обрабатываемой поверхности за пределы поля допуска автоматически вносит поправку в систему «станок-приспособление инструмент-заготовка» (технологическая система) и подналаживают ее на заданный размер. На станках, выполняющих обработку за несколько рабочих ходов (например, на круглошлифовальных), применяют устройства активного контроля, которые измеряют размер детали в процессе обработки. При достижении заданного размера устройства автоматически отключают подачу инструмента. Применение этих устройств повышает точность и производительность обработки путем уменьшения времени на вспомогательные операции. Эта цель достигается также путем оснащения металлорежущих станков системами адаптивного управления процессом обработки. Система состоит из датчиков получения информации о ходе обработки и регулирующих устройств, вносящих в нее поправки. На точность обработки влияют: погрешности станка и его износ; погрешность изготовления инструментов, приспособлений и их износ; погрешность установки заготовки на станке; погрешности, возникающие при установке инструментов и их настройке на заданный размер; деформации технологической системы, возникающие под действием сил резания; температурные деформации технологической системы; деформация заготовки под действием собственной массы, сил зажима и перераспределения внутренних напряжений; погрешности измерения, которые обусловлены неточностью средств измерения, их износом и деформациями и др. Эти факторы непрерывно изменяются в процессе обработки, вследствие чего появляются погрешности обработки. Собственная точность станков (в ненагруженном состоянии) регламентирована стандартом для всех типов станков. При эксплуатации происходит изнашивание станка, в результате чего собственная точность его снижается. Износ режущего инструмента влияет на точность обработки в партии заготовок при одной настройке станка (например, при растачивании отверстий износ резца приводит к появлению конусообразности). Погрешности, допущенные при изготовлении и износе приспособления, приводят к неправильной установке заготовки и являются причинами появления погрешностей обработки. В процессе обработки под действием сил резания и создаваемых ими моментов элементы технологической системы изменяют относительное пространственное положение из-за наличия стыков и зазоров в парах сопрягаемых деталей и собственных деформаций деталей. В результате возникают погрешности обработки. Упругая деформация технологической системы зависит от силы резания и жесткости этой системы. Жесткостью J технологической системы называют отношение приращения нагрузки Р к вызванному им приращению У мм, упругого обжатия: J = Р/ У 16

17 Применительно к станку под жесткостью понимают его способность сопротивляться появлению упругих обжатий под действием сил резания. Как правило, жесткость станка определяет экспериментальным путем. Процесс резания сопровождается выделением теплоты. В результате изменяется температурный режим технологической системы, что приводит к дополнительным, пространственным перемещениям элементов станка вследствие изменения линейных размеров деталей и появлению погрешностей обработки. Заготовки, имеющие малую жесткость (L/D>10, где L длина заготовки; D ее диаметр), под действием сил резания и их моментов деформируются. Например, длинный вал небольшого диаметра при обработке на токарном станке в центрах прогибается. В результате диаметр на концах вала получают меньше, чем в середине, т. е. возникает бочкообразность. В отливках и кованых заготовках в результате неравномерного остывания возникают внутренние напряжения. При резании вследствие снятия верхних слоев материала заготовки происходят перераспределение внутренних напряжений и ее деформация. Для уменьшения напряжений отливки подвергают естественному или искусственному старению. Внутренние напряжения появляются в заготовке при термической обработке, холодной правке и сварке. Под достижимой точностью понимают точность, которая может быть обеспечена при обработке заготовки рабочим высокой квалификации на станке, находящемся в нормальном состоянии, при максимально возможных затратах труда и времени на обработку. Экономическая точность такая точность, для обеспечения которой затраты при данном способе обработки будут меньше, чем при использовании другого способа обработки той же поверхности. Точность деталей. Точность деталей это степень приближения формы детали к геометрически правильному ее прототипу. За меру точности детали принимают значения допусков и отклонений от теоретических значений показателей точности, которыми она характеризуется. Стандартами, введенными в действие в качестве государственных стандартов, а также ГОСТ, ГОСТ, ГОСТ установлены следующие показатели точности: 1) точность размеров, т. е. расстояний между различными элементами деталей и сборочных единиц; 2) отклонение формы, т. е. отклонение (допуск) формы реальной поверхности или реального профиля от формы номинальной поверхности или номинального профиля; 3) отклонение расположения поверхностей и осей детали, т. е. отклонение (допуск) реального расположения рассматриваемого элемента от его номинального расположения. Шероховатость поверхности не входит в отклонение формы. Иногда допускается нормировать отклонение формы, включая шероховатость поверхности. Волнистость включается в отклонение формы. В обоснованных случаях допускается нормировать отдельно волнистость поверхности или часть отклонения формы без учета волнистости. Точность размеров детали характеризуется допуском Т, который определяют как разность двух предельных (наибольшего и наименьшего) допустимых 17

18 размеров. Величина допуска Т зависит от размера квалитета. Например, размер, выполняемый по 7-му квалитету, более точный, чем такой же размер, выполненный по 8-му или 10-му квалитету. Точность размеров на чертежах проставляют условными обозначениями поля допуска (40Н7; 50К5) или предельных отклонений в миллиметрах, или условными обозначениями полей допусков и отклонений. Точность размеров грубее 13-го квалитета оговаривают в технических требованиях, где указывают, по какому квалитету их следует выполнять. Например, «неуказанные предельные отклонения размеров: отверстий Н14, валов h 14». Точность формы характеризуется допуском Т или отклонениями от заданной геометрической формы. Стандарт рассматривает допуски и отклонения двух форм поверхностей; цилиндрических и плоских. Количественно отклонение формы оценивают наибольшим расстоянием от точек реальной поверхности (профиля) до прилегающей поверхности (профилю). Допуск формы наибольшее допустимое значение отклонения формы. Отклонения формы отсчитывают по нормали от прилегающих прямых, плоскостей, поверхностей и профиля. Отклонение от плоскостности наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка. Частными видами отклонений от плоскости являются выпуклость и вогнутость. Отклонение формы цилиндрических поверхностей характеризуются допуском цилиндричности, который включает отклонение от круглости поперечных сечений и профиля продольного сечения. Частными видами отклонений от округлости являются овальность и огранка. Отклонения профиля в продольном сечении характеризуются допуском прямолинейности образующих и разделяются на конусообразность, бочкообразность и седлообразность. Точность расположения осей характеризуется отклонениями расположения. При оценке отклонений расположения отклонения формы рассматриваемых и базовых элементов исключают из рассмотрения. При этом реальные поверхности (профили) заменяют прилегающими, а за оси плоскости симметрии и центры реальных поверхностей или профилей принимают оси, плоскости симметрии и центры прилегающих элементов. Отклонение от параллельности плоскостей разность наибольшего и расстояний между плоскостями в пределах нормируемого участка. Отклонение от параллельности осей (или прямых) в пространстве геометрическая сумма отклонений от параллельности проекций осей (прямых) в двух взаимно перпендикулярных плоскостях; одна из этих плоскостей является общей плоскостью осей. Отклонение от перпендикулярности плоскостей отклонение угла между плоскостями от прямого угла (90), выраженное в линейных единицах на длине нормируемого участка. Отклонение от соосности относительно общей оси наибольшее рас- 18

19 стояние (1, 2,...) между осью рассматриваемой поверхности вращения и общей осью двух или нескольких поверхностей вращения на длине нормируемого участка. Кроме термина «отклонение от соосности», в отдельных случаях может применяться понятие отклонения от концентричности расстояние в заданной плоскости между центрами профилей (линий), имеющих номинальную форму окружности. Допуск концентричности Т определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базового элемента это наибольшее расстояние между плоскостью симметрии (осью) рассматриваемого элемента (или элементов) и плоскостью симметрии базового элемента в пределах нормируемого участка. Этот допуск определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базовой оси определяется в плоскости, проходящей через базовую ось перпендикулярно к плоскости симметрии. Позиционное отклонение наибольшее расстояние между реальным расположением элемента (его центра, оси или плоскости симметрии) и его номинальным расположением в пределах нормируемого участка. Позиционный допуск определяется в диаметральном и радиусном выражениях. Отклонения от пересечения осей наименьшее расстояние между осями, номинально пересекающимися. Радиальное биение разность наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении плоскостью, перпендикулярно к базовой оси. Радиальное биение является результатом совместного проявления отклонений от круглости профиля рассматриваемого сечения и отклонения его центра относительно базовой оси. Оно не включает в себя отклонение формы и расположения образующей поверхности вращения. Торцовое биение разность наибольшего и наименьшего расстояний от точек реального профиля торцовой поверхности до плоскости, перпендикулярной к базовой оси. Допуски формы и расположения указывают на чертежах согласно ГОСТ Вид допуска формы или расположения должен быть обозначен на чертеже знаком. Для допусков расположения и суммарных допусков формы и расположения дополнительно указывают базы, относительно которых задается допуск, и оговаривают зависимые допуски расположения или формы. Знак и значение допуска или обозначение базы вписывают в рамку допуска, разделенную на два или три поля, в следующем порядке (слева направо): знак допуска, значение допуска в миллиметрах, буквенное обозначение базы (баз). Рамки допуска вычерчивают сплошными тонкими линиями или линиями одинаковой толщины с цифрами. Высота цифр и букв, вписываемых в рамки, должна быть равна размеру шрифта размерных чисел. Допуски формы и расположения поверхностей выполняют предпочтительно в горизонтальном положении, при необходимости рамку располагают вертикально так, чтобы данные находились с правой стороны чертежа. 19

20 Линией, оканчивающейся стрелкой, рамку допуска соединяют с контурной или выносной линией, продолжающей контурную линию элемента, ограниченного допуском. Соединительная линия должна быть прямой или ломаной а ее конец, оканчивающийся стрелкой, должен быть обращен к контурной (выносной) линии элемента, ограниченного допуском в направлении измерения отклонения. В случаях, когда это оправдано удобствами выполнения чертежа, допускается: начинать соединительную линию от второй (задней) части рамки допуска; заканчивать соединительную линию стрелкой на выносной линии, продолжающей контурную линию элемента, и со стороны материала детали. Если допуск относится к поверхности или ее профилю (линии), а не к оси элемента, то стрелку располагают на достаточном расстоянии: от конца размерной линии. Если допуск относится к оси или плоскости симметрии определенного элемента, то конец соединительной линии должен совпадать с продолжением размерной линии соответствующего размера. При недостатке места на чертеже стрелку размерной линии можно заменить стрелкой выносной линии. Если размер элемента уже указан один раз на других размерных линиях данного элемента, используемых для обозначения допуска формы или расположения, то он не указывается. Размерную линию без размера следует рассматривать как составную часть этого обозначения. Если допуск относится к боковой поверхности резьбы, то рамку допуска соединяют. Если допуск относится к оси резьбы, то рамку допуска соединяют с размерной линией. Если допуск относится к общей оси или плоскости симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то соединительную линию проводят к общей оси. Величина допуска действительна для всей поверхности или длины элемента. Если допуск должен быть отнесен к определенной ограниченной длине, которая может находиться в любом месте ограниченного допуском элемента, то длину нормируемого участка в миллиметрах вписывают после значения допуска и отделяют от него наклонной линией. Если допуск задан таким образом на плоскости, данный нормируемый участок действителен для произвольного расположения и направления на поверхности. Если необходимо задать допуск по всему элементу и одновременно задать допуск на определенном участке, то второй допуск указывают под первым в объединенной рамке допуска. Если допуск должен относиться к нормируемому участку, расположенному в определенном месте элемента, то нормируемый участок обозначают и штрихпунктирной линией, ограничив ее размерами. Дополнительные данные пишут над или под рамкой допуска. Если необходимо для одного элемента задать два разных вида допуска объединяют и располагают их в рамке допуска. Если для поверхности надо одновременно указать обозначение допуска формы или расположения и буквенное обозначение поверхности, используемое для нормирования другого допуска, то рамки с обоими обозначениями располагают рядом на одной соедини- 20

21 тельной линии. Повторяющиеся одинаковые или разные виды допусков обозначаем одним и тем же символом, имеющие одни и те же значения и относящиеся к одним и тем же базам указывают один раз в рамке, от которой отходит одна соединительная линия, разветвляемая затем ко всем нормируемым элементам. Базы обозначают зачерненным треугольником, который линией соединяют с рамкой допуска. Треугольник, обозначающий базу, должен быть равносторонним с высотой, равной размеру шрифта размерных чисел. Если треугольник нельзя простым и наглядным способом соединить с рамкой допуска, то базу обозначают прописной буквой в рамке и эту букву вписывают в третье поле рамки допуска. Если базой является поверхность или прямая этой поверхности, а не ось элемента, то треугольник должен располагаться на достаточном расстоянии от конца размерной линии. Если базой является ось или плоскость симметрии, то треугольник располагают в конце размерной линии соответствующего размера (диаметра, ширины) элемента, при этом треугольник может заменить размерную стрелку. Если базой является общая ось или плоскость симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то треугольник располагают на общей оси. Если базой является только часть или определенное место элемента, то ее расположение ограничивают размерами. Если два или несколько элементов образует общую базу и их последовательность не имеет значения (например, они имеют общую ось или плоскость симметрии), то каждый элемент обозначают самостоятельно и обе (все) буквы вписывают подряд в третье поле рамки допуска. Если назначают допуск расположения для двух одинаковых элементов, и нет необходимости или возможности (у симметричной детали) различать элементы и выбрать один за базу, то вместо зачерненного треугольника используют стрелку. Таким образом, необходимо следующее: 1) измерение точности детали должно начинаться с измерения микронеровностей, затем должны измеряться микронеровности, отклонения от требуемого поворота и, наконец, точность расстояния или размера (если не предпринимать особых мер для исключения влияния соответствующих отклонений); 2) допуски на расстояния и размеры поверхностей детали должны быть больше допусков на величину отклонений от требуемого поворота поверхностей, которые, в свою очередь, должны быть больше допусков на микрогеометрические отклонения, а последние больше допусков на микрогеометрические отклонения, зависящие от назначаемого класса шероховатости поверхностей. Лекция 3. Рабочая документация технологического процесса Согласно ГОСТ Единой системы технологической документации (ЕСТД) «Комплектность документов в зависимости от типа производства» 21

22 документы, необходимые для описания технологических процессов, подбирают в зависимости от типа производства. Кроме вышеперечисленных видов технологических процессов по организации (единичной и типовой), ГОСТ установлено, что каждый вид технологического процесса по степени детализации содержания разделяется на маршрутный, операционный и маршрутнооперационный. Маршрутный технологический процесс процесс, выполняемый по документации, в которой излагается содержание операций без указаний переходов и режимов обработки. Операционный технологический процесс процесс, выполняемый по документации, в которой излагается содержание операций с указанием переходов и режимов обработки. Маршрутно-операционный процесс процесс, выполняемый по документации, в которой излагается содержание отдельных операций без указаний переходов и режимов обработки. Комплект форм документов общего назначения для технологического процесса может содержать: маршрутную карту (МК); операционную карту (ОК); карту эскизов (КЗ); ведомость деталей к типовому (групповому) технологическому процессу (операции) (ВТП, ВТО); сводную операционную карту (СОК) и др. Маршрутная карта (ГОСТ) содержит описание технологического процесса изготовления и контроля детали по всем операциям и технологической последовательности. В ней указывают соответствующие данные об оборудовании, оснастке, материальных и трудовых нормативах. В операционную карту вносят описание операции, расчлененной на переходы, с указанием оборудования, оснастки и режимов обработки. ОК применяют в серийном и массовом производстве. К комплекту ОК на все операции технологического процесса прилагают маршрутную карту. При проектировании операций для станков с ЧПУ составляют расчетно-технологическую карту, в которую заносят необходимые данные о траектории движения инструмента и режимах обработки. На основе этой карты разрабатывают управляющую программу станком. МК и ОК составляют на основе данных чертежей, производственной программы, спецификации, описания конструкций, технических условий и следующих руководящих и нормативных материалов: паспорта металлорежущих станков; каталогов станков, режущих и вспомогательных инструментов, альбомов нормальных приспособлений; руководящих материалов по режимам резания; нормативов подготовительно-заключительного и вспомогательного времени. МК имеет определенную форму. В ее верхнюю часть заносят данные об изготовляемой детали и заготовке, в нижнюю номер, наименование и содержание операций, а также необходимые для выполнения операций коды, наименования и данные станков, приспособлений, режущих и измерительных инструментов, указывают штучное время, число рабочих и подготовительно- 22


Нормирование точности и технические измерения Основные понятия о точности в машиностроении Точность это степень приближения значения параметра изделия, процесса и т. д. к его заданному значению. Точность

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР Единая система конструкторской документации УКАЗАНИЕ НА ЧЕРТЕЖАХ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ Unified system for design documentation. Representation of

Лекция 9 ДОПУСКИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТИ Модуль - 3, тема - 9 Цель: изучение принципов выбора допусков формы и расположения поверхностей, непосредственно связанных с обеспечением высокой эффективности

Имя ТЗ 1ТМ 2ТМ 3ТМ 4ТМ 5ТМ 6ТМ 7ТМ Тестовые задания для аттестации инженерно-педагогических работников ГБОУ НиСПО Дисциплина «Технология машиностроения» Специальность Технология машиностроения Формулировка

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ГОСТ 30893.2-2002. Основные нормы взаимозаменяемости. Общие допуски. Допуски формы и расположения поверхностей, не указанные индивидуально. Дата введения 1 января 2004 г. Взамен ГОСТ 25069-81 1 Область

«Смоленский промышленно-экономический колледж» Тесты по дисциплине «Технология машиностроительного производства» специальность 151001 Технология машиностроения Смоленск Уровень А 1. Массовое производство

Часть 1. Теоретические основы технологии машиностроения 1.1. Введение. Машиностроение и его роль в ускорении технического процесса. Задачи и основные направления развития машиностроительного производства.

ОБЩИЕ СВЕДЕНИЯ Цель изучение основных общетехнических терминов и понятий, необходимых в освоении знаний практической технологии и используемых при выполнении работ учебно-технологического практикума в

СТАНДАРТИЗАЦИЯ НОРМ, ВЗАИМОЗАМЕНЯЕМОСТЬ Взаимозаменяемость принцип конструирования и изготовления деталей, обеспечивающий возможность сборки и замены при ремонтах независимо изготовленных с заданной точностью

ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Понятие о производственном и технологическом процессах. Структура технологического процесса (ГОСТ 3.1109-83). Виды и типы производства. Технологические характеристики типов производства

Теоретическое задание заключительного этапа Всероссийской олимпиады профессионального мастерства обучающихся по специальности среднего профессионального образования 15.02.08 ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Вопросы

1 Цели и задачи дисциплины 1.1 Изучение основ технологической науки и практики. 1. Приобретение навыков разработки технологических процессов механическоой обработки деталей и сборки узлов автомобилей.

ВВЕДЕНИЕ 10 РАЗДЕЛ 1. МАШИНА КАК ОБЪЕКТ ПРОИЗВОДСТВА 12 1.1 Понятие машины и её служебного назначения 12 1.2 Технические параметры и параметры качества машины 13 1.3 Содержание и структура жизненного цикла

ГОСТ 24643-81. Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения. Дата введения 1 июля 1981 г. Взамен ГОСТ 10356-63(в части разд. 3) 1. Настоящий стандарт

ПРОГРАММА ВСТУПИТЕЛЬНЫЙ ИСПЫТАНИЙ по предмету «ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ» Введение Цели, задачи, предмет дисциплины, её роль и взаимосвязь с другими дисциплинами. Значение дисциплины в системе подготовки

ГОСТ 2.308-2011 Группа Т52 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Единая система конструкторской документации УКАЗАНИЯ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ Unified system of design documentation. Representation

СОДЕРЖАНИЕ Введение... 3 РАЗДЕЛ I. ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИЗДЕЛИЙ В МАШИНОСТРОЕНИИ Глава 1. Точность изделий и способы ее обеспечения в производстве... 7 1.1. Изделия машиностроительного

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет имени Г.В. Плеханова» ОСНОВЫ

Введение... 3 РАЗДЕЛ I. ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАЧЕСТВА ИЗДЕЛИЙ В МАШИНОСТРОЕНИИ Глава 1. Точность изделий и способы ее обеспечения в производстве... 7 1.1. Изделия машиностроительного производства

Т е м а 6. ОБРАБОТКА ОТВЕРСТИЙ Цель изучение технологических возможностей лезвийной обработки отверстий на вертикально сверлильных и координатно расточных станках, основных узлов станков и их назначения,

Разработка технологических процессов (ТП) механической обработки является сложной, комплексной, вариантной задачей, требующей учета большого числа разнообразных факторов. В комплекс кроме разработки собственно

Косилова А.Г. Справочник технолога-машиностроителя. Том 1 Автор: Косилова А.Г. Издательство: Машиностроение Год: 1986 Страниц: 656 Формат: DJVU Размер: 25М Качество: отличное Язык: русский 1 / 7 В 1-м

Т е м а 5. МНОГОИНСТРУМЕНТАЛЬНАЯ ОБРАБОТКА ЗАГОТОВОК Цель изучение технологических возможностей многоинструментальной обработки на токарно-револьверном станке, основных узлов станка и их назначения; приобретение

Вопросы для подготовки к рубежному контролю 3 по курсу «Инженерная графика» для студентов кафедры СМ-10 «Колесные машины» (четвертый семестр) 1-я группа вопросов 1. Дайте определение документа «Чертеж

Аннотация дисциплины «Технология конструкционных материалов» Направление подготовки 150700.62 Общая трудоемкость изучаемой дисциплины составляет 4 ЗЕТ(144 час.). Цели и задачи дисциплины: Целью дисциплины

Проект Утвержден приказом Министерства труда и социальной защиты Российской Федерации ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ СПЕЦИАЛИСТ ПО ТЕНОЛОГИЯМ МЕАНОСБОРОЧНОГО ПРОИЗВОДСТВА 2 ПРОФЕССИОНАЛЬНЫЙ СТАНДАРТ СПЕЦИАЛИСТ

ГОСТ 30893.2-2002 (ИСО 2768-2-89) Группа Г12 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Основные нормы взаимозаменяемости ОБЩИЕ ДОПУСКИ Допуски формы и расположения поверхностей, не указанные индивидуально Basic norms

РАЗМЕРЫ И ИХ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ На чертеже должно быть задано минимальное число но достаточное для изготовления и контроля изделия. Каждый размер на чертеже следует приводить лишь один раз. Размеры,

1 Цели и задачи дисциплины 1.1 Дать студентам основы знаний о современном машиностроительном производстве и технологических процессах изготовления изделий в машиностроении. 1.2 Дать базовые знания по специальным

ОГЛАВЛЕНИЕ Введение................................................................ 5 Глава 1. Основные понятия и определения.................................... 7 1.1. Производственный процесс в машиностроении.....................

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ. ОП.05 «Общие основы технологии металлообработки и работ на металлорежущих станках» Наименование разделов и тем Тема 1. Физические основы процесса резания

Аннотация к рабочей программе дисциплины «Технология конструкционных материалов» Цель преподавания дисциплины Целью дисциплины является получение студентами общеинженерной технологической подготовки, которая

АННОТАЦИЯ ДИСЦИПЛИНЫ «ВЗАИМОЗАМЕНЯЕМОСТЬ И НОРМИРОВАНИЕ ТОЧНОСТИ» Целью освоения дисциплины является: подготовка специалистов, способных решать задачи анализа, нормирования, стандартизации и контроля точности

ВОПРОСЫ, КОТОРЫЕ БЫЛИ ЗАДАНЫ НА ЗАЩИТЕ ДИПЛОМНЫХ ПРОЕКТОВ ПО РЕМОНТУ ОБОРУДОВАНИЯ 1.1 Техническая эксплуатация технологического оборудования 1. Опишите основной принцип действия узла своего станка. 2.

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОЦЕССА ОЦЕНКИ ОСТАТОЧНОГО РЕСУРСА МЕТАЛЛООБРАБАТЫВАЮЩЕГО СТАНКА Зайцев Роман Владимирович ФГУП «НПО Астрофизика», г.москва [email protected] Во время эксплуатации приходится

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ПРОФЕССИОНАЛЬНЫХ МОДУЛЕЙ программы подготовки специалистов среднего звена базовой подготовки по специальности среднего профессионального образования 15.02.08 «Технология машиностроения»

Лекция 5. Автоматизация управления технологическим процессом с целью повышения точности и производительности обработки Цели и желаемый результат. Изучить принцип работы системы управления с отрицательной

ПРАВИЛА НАНЕСЕНИЯ РАЗМЕРОВ НА ЧЕРТЕЖАХ ОГЛАВЛЕНИЕ 1. Понятие размеров на чертеже... 2 2. Виды размеров детали... 2 3. Размерные элементы... 3 4. Условные знаки... 6 5. Способы нанесения размеров... 8 6.

Министерство образования Нижегородской области ГБОУ СПО Нижегородский автотранспортный техникум М Е Т О Д И Ч Е С К О Е П О С О Б И Е По выполнению части дипломного проекта, связанной с разделом «Допуски

ОГЛАВЛЕНИЕ Список принятых сокращений.............................. 3 Предисловие............................................ 4 Введение............................................... 7 Глава первая Исходная

Объектами машиностроительного производства являются машины различного назначения. Технологический процесс изготовления машин предусматривает производство деталей, сборочных единиц (узлов) и изделий. Изделие

УДК 621.813 ВЛИЯНИЕ ЛЮНЕТОВ НА ТОЧНОСТЬ И КАЧЕСТВО ЗАГОТОВОК ПРИ ОБРАБОТКЕ ТОЧЕНИЕМ Власов М.В., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Технологии обработки материалов» Научный

Министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный машиностроительный

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ (КРАТКИЕ СВЕДЕНИЯ) Поверхность детали после механической обработки не бывает абсолютно гладкой, так как режущий инструмент оставляет на ней следы в форме микронеровностей выступов

КИНЕМАТИЧЕСКАЯ СХЕМА План 1. Правила выполнения схем 1.1. Общие требования к выполнению схем 1.2. Условные графические обозначения элементов 1.3. Позиционные обозначения элементов 1.4. Перечень элементов

Т е м а 13. ТОЧНОСТЬ ФОРМООБРАЗОВАНИЯ ПРИ РЕЗАНИИ Цель изучение взаимодействия инструмента и заготовки, видов отклонения формы поверхности заготовки, возникающих при резании; исследование влияния факторов

Глава 2 ВЫЯВЛЕНИЕ ТЕХНОЛОГИЧЕСКИХ РАЗ- МЕРНЫХ ЦЕПЕЙ При разработке технологических процессов изготовления деталей следует обязательно выявлять технологические размерные цепи (связи). Построение размерных

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет» Воткинский филиал Смирнов В.А. Методические

УДК 621.9.015 + 621.92.06-529 ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ОБРАБОТКИ ОТВЕРСТИЙ НА СТАНКАХ С ЧПУ С.П. Пестов Предложен подход к моделированию точности обработки отверстий концевыми мерными инструментами на

А. П. ОСИПОВ С. П. ПЕТРОВА ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ Учебное пособие Самара Самарский государственный технический университет 2014 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Т е м а 1. КИНЕМАТИЧЕСКИЕ ОСНОВЫ ФОРМООБРАЗОВАНИЯ РЕЗАНИЕМ Цель изучение кинематики формообразования поверхностей резанием, основных элементов и геометрических параметров режущего инструмента. Содержание

УДК 621.01 ТЕОРИЯ И ПРАКТИКА БАЗИРОВАНИЯ В МЕХАНООБРАБОТКЕ В.Г. Прохоров, Г.И. Рогозин Точность обработки на металлорежущих станках обусловлена воздействием многочисленных случайных факторов, среди которых

1. Понятие размеров на чертеже Одной из важнейших составляющих чертежа являются размеры. Размер число, характеризующее величину отрезка прямой, дуги или угла. Размеры на чертежах проставляют так, чтобы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЙ ТЕХНИЧЕСКИПЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПОДГОТОВКИ ИНЖЕНЕРНЫХ КАДРОВ Кафедра «Технология машиностроения» Технология машиностроения

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Общие основы технологии металлообработки и работ на металлорежущих станках СОДЕРЖАНИЕ стр. 1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4. СТРУКТУРА И СОДЕРЖАНИЕ

Введение
1.Машина как объект производства
2 Производственный процесс и его структура
3 Технологический процесс и его структура
4 Типы производства и их характеристика
Заключение
Список использованных источников

Введение

В основе производственного процесса лежит технологический процесс. Он включает в себя все операции обработки, связанные непосредственно с изменением формы, размеров и свойств изготовляемого изделия, выполняемые а определенной последовательности. Различают такие технологические процессы: обработка давлением, механическая обработка, термическая обработка, сборка и многие другие. На заводе технологические процессы и технологическую документацию разрабатывает отдел главного технолога. Правильно разработанные технологические процессы обеспечивают выполнение всех операций по изготовлению промышленной продукции с минимальными затратами материалов, труда и энергии.

Виды производств. Для этого типа производства характерно применение универсального оборудования, на котором обрабатываются разнообразные по форме и величине детали, универсальные приспособления и измерительный инструмент, значительное количество ручных работ, использование высококвалифицированных рабочих. Себестоимость деталей на таких заводах значительно выше, чем на заводах с иным характером производства, а производительность труда намного ниже. Типичными представителями такого типа производства являются заводы тяжелого машиностроения, турбинные, судостроительные, химического машиностроения и др. Кроме того, на современных машиностроительных заводах с массовым и серийным характером производства имеются экспериментальные цеха, где создаются новые образцы машин в одном или нескольких экземплярах, что характерно для индивидуального производства.

Серийное производство характеризуется выпуском определенных партий (серий) одинаковых изделий, которые повторяются через определенные промежутки времени, применением высокопроизводительного специального оборудования, приспособлений, оснастки и инструмента. В зависимости от размера партии (серии) выпускаемых изделий различают три типа серийного производства: крупносерийное, которое по своему характеру приближается к массовому, среднесерийное и мелкосерийное. Типичными представителями заводов серийного производства являются тепловозостроительные, станкостроительные и др. Массовое производство характеризуется выпуском большого количества одинаковых изделий (машин) на протяжении длительного времени, узкой специализацией рабочих мест, применением высокопроизводительного специального оборудования (автоматических линий, станков-автоматов и полуавтоматов, агрегатных станков), а также специальных оснастки, приспособлений и инструментов, широкой взаимозаменяемостью деталей.

К заводам этого типа относятся автомобиле- и тракторостроительные, завод поршней и др. Принципы поточного производства. В машиностроении различают две формы организации производства: поточное и непоточное. Характерной особенностью поточного производства является закрепление за рабочими местами выполнения определенных операций, расположение рабочих мест в технологической последовательности выполнения операций обработки. При этом до минимума сокращается время на передачу детали с одного рабочего места к другому. Поточная форма организации производства свойственна заводам серийного и массового производства. Пели за рабочими местами операции не закреплены и оборудование установлено независимо от технологической последовательности обработки, то это является характерными чертами непоточного производства.

Элементы технологического процесса

Всякий технологический процесс состоит из отдельных элементов. Такими элементами являются: операция, установка, позиция, переход, проход, рабочий прием. Под технологической операцией понимают часть технологического процесса обработки заготовки, выполняемую на одном рабочем месте (станке) одним инструментом (резцом, напильником и т. п.) одним или несколькими рабочими. В зависимости от объема выполняемой работы операции могут быть простыми и сложными. Сложную операцию можно разбить на отдельные составные части, называемые установками.

Таким образом, установка - это часть операции, которая выполняется на станке (рабочем месте) при неизменном креплении заготовки. Позиция представляет собой часть операции, которая выполняется при одном неизменном положении заготовки относительно инструмента (не считая перемещении, связанных с рабочими движениями заготовки или инструмента). Часть операции по обработке одной или одновременно нескольких поверхностей заготовки, которая выполняется при неизменных режиме станка и инструменте (или нескольких инструментах), называется переходом. Проходом называется часть перехода, при котором снимается один слой металла или другого материала. Рабочим приемом называется законченное действие рабочего при выполнении операции (закрепление или снятие заготовки, режущего инструмента и т. п.).

Многопозиционная обработка. Высокой производительности труда на машиностроительных заводах при механической обработке достигают благодаря широкому внедрению прогрессивных технологических процессов, применения специального высокопроизводительного оборудования, приспособлений и инструмента. В зависимости от тина производства и имеющегося оборудования обработку деталей можно выполнять двумя различными методами: на небольшом количестве различных станков и на сравнительно большом количестве станков, каждый из которых выполняет только одну определенную операцию. Обработка деталей по первому методу получила название метода концентрированных (укрупненных) операций, а по второму - метода дифференцированных (расчлененных) операций.

Отличительной чертой метода укрупненной обработки является объединение нескольких переходов в одной более сложной операции. Например, сокращение количества перестановок деталей на станке и выполнение заданной обработки за одну установку, одновременное сверление нескольких отверстий в различных плоскостях и т. п. Высшей степенью развития метода укрупнения операции является многопозиционная обработка деталей на автоматических поточных линиях и на агрегатных станках, что является характерным для массового и крупносерийного производства.

Однако метод укрупнения операций успешно применяется и в условиях единичного и мелкосерийного производства: при обработке тяжелых и крупных деталей, при наличии зажимных приспособлений, которые требуют при закреплении деталей больших физических усилий рабочего, при установке сложных заготовок, для правильности выверки которых требуется затрата большого количества времени и т. п. При этом требуется более высокая квалификация рабочих и предъявляются более высокие требования к рабочему месту. Совмещению нескольких операций на одном станке способствует применение многоместных приспособлений, много шпиндельных головок, комбинированных инструментов (комбинированных сверл, зенкеров и т. п.).

1.Машина как объект производства

Машиностроение является одной из ведущих отраслей народного хозяйства. Объектами производства машиностроительной промышленности являются различные виды машин. Понятие о «машине» формировалось на протяжении многих столетий по мере развития науки и техники. С давних времен под машиной понимали устройство, предназначенное для действия в нем сил природы сообразно потребностям человека. В настоящее время понятие «машина» расширилось и трактуется с разных позиций и в различном смысле. Например, с точки зрения механики машина ­ это механизм или сочетание механизмов, выполняющих целесообразные движения для преобразования энергии, материалов или производства работ.

Появление электронно-вычислительных машин, стихийно причисленных к классу машин, вынудило рассматривать машину как устройство, выполняющее определенные целесообразные механические движения для преобразования энергии, материалов, производства работ или же для сбора, передачи, хранения, обработки и использования информации. Все машины и различные механические устройства создавались с целью замены или облегчения физического и умственного труда человека. С точки зрения технологии машиностроения машина может быть либо объектом, либо средством производства. Поэтому для технологии машиностроения понятие «машина» можно определить как систему, созданную трудом человека для качественного преобразования исходного продукта в полезную для человека продукцию. Процесс преобразования может вестись механическим, физическим, химическим путем как каждым в отдельности, так и в сочетаниях. В зависимости от области использования и функционального назначения различают энергетические, производственные и информационные машины.

В энергетических машинах один вид энергии превращается в другой. Такие машины обычно называют двигателями. Гидравлические турбины, двигатель внутреннего сгорания, паровые и газовые турбины относят к так называемым тепловым двигателям. Электрические двигатели постоянного и переменного тока составляют группу электрических машин. Число типов производственных машин достаточно велико. Это объясняется разнообразием производственных процессов, выполняемых этими машинами. Различают строительные, грузоподъемные, землеройные, транспортные и другие машины. Самую большую группу составляют технологические или рабочие машины. К ним можно отнести, например, металлорежущие станки, текстильные и бумагоделательные машины, полиграфическое оборудование и др. Для технологических машин характерны периодически повторяющиеся перемещения их рабочих органов, которые непосредственно выполняют производственные операции. К рабочим органам машины необходимо непрерывно подводить механическую энергию. При этом двигатель (чаще всего электрический) и рабочие органы машины соединяются с помощью специальных устройств, называемых механизмами. Механизмы являются составной частью как энергетических, так и производственных машин.

В современных энергетических машинах используют простые виды движений (вращательные, возвратно-поступательные), поэтому в них применяется небольшое число типов механизмов. Наоборот, число типов механизмов, используемых в современных производственных машинах, достаточно велико. Это объясняется большим разнообразием типов движений их рабочих органов. Машина-двигатель, передаточный механизм и исполнительная машина, спроектированные как одно целое и установленные на общей раме или фундаменте, представляют собой машинный агрегат. Огромное значение для развития всех отраслей современного производства имеет все более широкое внедрение методов автоматического контроля производственных процессов. Устройства, используемые для этой цели, называют приборами. Отдельной группой устройств, изменяющих состояние предмета труда без непосредственного участия рабочего, являются аппараты.

В аппаратах происходят различные химические, тепловые, электрические и другие процессы, необходимые для обработки или изменения свойств обрабатываемых деталей. Рабочие устройства аппаратов, как правило, неподвижны. Иногда аппараты включают устройства для транспортирования обрабатываемых объектов (транспортеры термических печей, различные загрузочные и дозирующие устройства и др.). Группу информационных машин составляют вычислительные, измерительные, контрольно-управляющие и др. Энергетические и информационные машины изучаются в специальных курсах соответствующих специальностей. Машины, механизмы, отдельные узлы и детали в процессе производства их на машиностроительном предприятии являются изделиями. Изделием в машиностроении называют любой предмет или набор предметов производства, подлежащих изготовлению на данном предприятии.

Изделием может быть машина, ее элементы в сборе и отдельные детали, если они являются продуктом конечной стадии данного производства. Например, для автомобильного завода изделием является автомобиль, для завода редукторов – редуктор, для завода поршней – поршень и т.п. Изделия могут быть неспецифицированными (не имеющими составных частей) и специфицированными (состоящими из двух и более частей). Деталь ­ это изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерным признаком детали является отсутствие в ней разъемных и неразъемных соединений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины. Детали машин различного функционального назначения отличаются формой, размерами, материалом и др. Вместе с тем независимо от функционального назначения детали машин имеют общее свойство производственного характера ­ они являются продуктом производства, формирующего их из исходных заготовок и материалов.

Кроме отдельных машин и их частей объектами производства машиностроительных предприятий могут быть комплексы и комплекты изделий. Комплексом называют два и более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций, например: бурильная установка, автоматическая линия, цех-автомат и т.п. Комплект ­ это два и более изделий, не соединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, которые имеют общее эксплуатационное назначение вспомогательного характера, например: комплект запасных частей, комплект инструмента и принадлежностей, комплект измерительной аппаратуры и т.п. Группу составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части, называют сборочным комплектом. Изделие предприятия-поставщика, применяемое как составная часть изделия, которое выпускается предприятием-изготовителем, называют комплектующим изделием. Для моторного завода комплектующими изделиями могут быть, например, стартеры, генераторы, прерыватели-распределители и др. Одной из важнейших характеристик выпускаемой продукции является ее качество. При этом в соответствии с ГОСТ 15467­79 под качеством промышленной продукции понимается совокупность свойств, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Качество продукции фиксируется на определенный период времени с помощью различных нормативных документов, главным образом стандартов, и изменяется при появлении более прогрессивных технологий. Качество продукции относится к числу важнейших показателей производственно-хозяйственной деятельности промышленного предприятия. Именно качество продукции обусловливает финансовую и экономическую устойчивость предприятия, темпы научно-технического прогресса, экономию материальных и трудовых ресурсов. Во всех странах мира выпуск продукции высокого качества рассматривается как одно из важнейших условий развития национальной экономики. Снижение качества приводит к уменьшению объема продаж, прибыли и рентабельности, к снижению экспорта и другим нежелательным последствиям.

2. Производственный процесс и его структура

Промышленное производство является наиболее крупной и ведущей областью сферы материального производства. Оно представляет собой систему взаимосвязанных отраслей, занятых добычей и переработкой промышленного и сельскохозяйственного сырья в готовую продукцию, необходимую для общественного производства и личного потребления. Машиностроительное производство основано на преимущественном применении при выпуске продукции методов технологии машиностроения. Основной продукцией машиностроения являются металлорежущие станки, автомобили, тракторы, сельскохозяйственные машины, оборонная продукция, оборудование для энергетики, строительная техника и другие виды машин и механизмов. Машиностроительное производство в целом представляет собой множество организационно и экономически самостоятельных производственных единиц, называемых предприятиями машиностроения. Машиностроительное предприятие является сложноорганизованной, целенаправленной системой, объединяющей людей и орудия производства для обеспечения выпуска изделий.

Процесс изготовления машин и механизмов на машиностроительном предприятии состоит из комплекса работ, в результате которых исходные материалы и полуфабрикаты превращаются в готовое изделие. Отдельные виды исходных материалов, деталей и узлов (подшипники, электродвигатели, гидроавтоматика, резинотехнические изделия и др.) машиностроительный завод может получать в качестве комплектующих изделий от других промышленных предприятий. Совокупность всех действий людей и орудий производства, необходимых для изготовления или ремонта изделий на данном предприятии, называют производственным процессом. Производственный процесс современных машиностроительных предприятий представляет собой единый взаимосвязанный комплекс работ, охватывающих подготовку средств производства и организацию обслуживания рабочих мест, процессы получения исходных заготовок и готовых деталей, процессы сборки, испытания, технического контроля, хранения, транспортировки, упаковки и сбыта готовой продукции, а также другие виды работ, связанные с выпуском продукции. В зависимости от значения и роли в изготовлении продукции различают основные, вспомогательные и обслуживающие производственные процессы. Основной процесс обеспечивает производство товарной продукции. Он непосредственно связан с изготовлением деталей и сборкой из них машин и механизмов. В ходе основных производственных процессов сырье и материалы превращаются в готовую продукцию заданного качества. К основному производству относятся, например, обработка заготовок на металлорежущих станках, химическая и химико-термическая обработка, ковка, штамповка, сварка, сборка и др.

Вспомогательные процессы обеспечивают стабильную и ритмичную работу основного процесса и заняты изготовлением продукции и оказанием услуг, необходимых основному производству. К этим работам относят, например, изготовление металлорежущих инструментов и технологической оснастки, наладка и ремонт оборудования, изготовление контрольно-измерительных инструментов, заточка инструмента, обеспечение предприятия электрической и тепловой энергией, сжатым воздухом, углекислым газом, кислородом, ацетиленом и другие виды работ. Изделия основного производства предназначены для реализации по договорам и на свободном рынке, а изделия вспомогательного производства используются только внутри предприятия-изготовителя. Обслуживающие процессы должны обеспечивать бесперебойную и ритмичную работу всех подразделений предприятия. К ним относятся меж­ и внутрицеховой транспорт, погрузочно-разгрузочные работы, складирование и хранение сырья, материалов, комплектующих изделий, уборка цехов и территории предприятия. Сюда можно отнести также заводские лаборатории, лечебные учреждения, столовые и др.

В зависимости от технической оснащенности, т.е. в зависимости от участия рабочего производственные процессы подразделяются на ручные, ручные механизированные, машинно-ручные, машинные, автоматизированные и аппаратурные. В случае ручных процессов воздействие на предмет труда осуществляется рабочим с помощью каких-либо инструментов, но без применения любых источников энергии. Это, например, заворачивание гайки ключом, сверление отверстия ручной дрелью.

Ручные механизированные процессы характеризуются тем, что технологические операции выполняются рабочим с помощью ручных механизированных орудий труда, т.е, с использованием каких-либо источников энергии, например, сверление отверстий электродрелью, зачистка литья переносным наждачным кругом и т.п. К машинно-ручным относятся процессы, когда воздействие на предмет труда производится с помощью машины или механизма, но при обязательном участии рабочего, например, сверление отверстия на сверлильном станке с ручной подачей.

Машинные процессы осуществляются на машинах, станках и других видах технологического оборудования без непосредственного участия рабочего, а роль рабочего при этом заключается в обеспечении машины материалом, снятии готовой продукции, пуске и остановке оборудования и пр.

Автоматизированные производственные процессы выполняются на станках-автоматах, автоматизированных поточных линиях и других видах автоматизированного оборудования, а роль рабочего в этом случае сводится к контролю за ходом процесса и выполнению пуско-наладочных работ. Аппаратурные процессы имеют место тогда, когда воздействие на предмет труда происходит каким-либо видом энергии ­ тепловой, химической, электрической. К этим видам процессов можно отнести, например, металлургические процессы, термическую и химико-термическую обработку, приготовление пара, сушку, различные химические процессы. Рабочие в этом случае наблюдают за работой аппаратов и при необходимости вмешиваются в ход протекающих в них процессов. В зависимости от стадии изготовления, т.е. от места в процессе изготовления изделия, различают заготовительные, обрабатывающие и сборочные производственные процессы. Заготовительные процессы превращают сырье и материалы в исходные заготовки, по форме и размерам приближающиеся к готовым деталям.

В машиностроении это, например, литейные, кузнечно-штамповочные цехи, цехи по первичной обработке проката. Обрабатывающими являются процессы, в ходе которых заготовки превращаются в готовые детали, форма, размеры и свойства которых заданы конструктором на чертеже. К этой фазе относятся обработка заготовок на металлорежущих станках, термическая и химико-термическая обработка, гальванические, окрасочные и другие работы. Сборка узлов, агрегатов и отдельных деталей в готовые изделия производится в отдельных цехах или на отдельных участках цехов. Кроме того, в производственном процессе предусматриваются контроль качества, регулирование и испытание изготовленной продукции, т.е. проверка тех параметров, которые и определяют ее качество, назначение и применение.

Производственную деятельность завода осуществляют входящие в его состав цехи, участки, различные службы и подразделения, в которых изготовляется, проходит контрольные проверки и испытания основная продукция, комплектующие изделия, материалы и полуфабрикаты, запасные части для обслуживания изделий и ремонта их в процессе эксплуатации. Цех является основной производственной единицей машиностроительного предприятия. При этом по ГОСТ 14.004­83 под цехом понимают совокупность производственных участков. Цех характеризуется выполнением работ технологически однородного вида, наличием определенного типажа технологического оборудования и определенных видов профессий рабочих. Например, в механических цехах производят обработку деталей машин резанием на металлорежущих станках, профессии рабочих ­ токари, фрезеровщики, сверловщики, расточники и др.

Цех является обособленным в административном отношении звеном, выполняющим определенную часть общего производственного процесса изготовления продукции. Цехи осуществляют свою деятельность на принципах хозяйственного расчета. Производственный участок ­ это группа рабочих мест, организованных по предметному, технологическому или предметно-технологическому принципам. В зависимости от выполняемых функций и роли в изготовлении продукции цехи, как правило, подразделяются на производственные, вспомогательные и обслуживающие. Кроме того, почти на каждом машиностроительном предприятии имеются подразделения, занимающиеся повышением производственной квалификации рабочих, инженерно-технических работников, специалистов. Состав цехов и служб предприятия с указанием связей между ними называют его производственной структурой.

Особую роль в производственной структуре предприятия играют конструкторские бюро, научно-исследовательские и испытательные станции, В них разрабатываются конструкции новых изделий, новые технологические процессы, проводятся экспериментальные исследования и опытно-конструкторские работы, проводится доработка конструкции изделия и т.п. Производственная структура цеха определяется главным образом конструктивными и технологическими особенностями продукции цеха, объемом выпуска продукции, формой специализации цеха и его кооперированием с другими цехами. Основными элементами производственной структуры цеха являются участки и линии, обеспечивающие изготовление деталей и сборку узлов и изделий, составляющих производственную программу цеха и завода. Кроме основных производственных участков и линий в состав цехов входят также вспомогательные отделения и службы, обеспечивающие функционирование производственных участков. Это, например, отделения и участки по восстановлению режущего инструмента, его ремонта, цеховая ремонтная база по техническому обслуживанию и ремонту оборудования, сбора и переработки стружки, контрольные и испытательные отделения и др. Основные производственные участки могут создаваться по принципу технологической и предметной специализации.

На участках, организованных по принципу технологической специализации, выполняют технологические операции определенного вида. Например, в механическом цехе могут быть организованы токарный, фрезерный, шлифовальный, слесарный и другие участки, в сборочном ­ участки узловой и окончательной сборки изделий, испытаний их частей и систем, контрольно-испытательные станции и др. На участках, организованных по принципу предметной специализации, осуществляют не отдельные виды операций, а технологические процессы в целом, вследствие чего получают законченную продукцию для данного участка. Например, выделяют участок по обработке корпусных деталей, валов, зубчатых и червячных колес, метизов и т.п. В некоторых случаях за цехом или участком закрепляют технологический процесс изготовления отдельного изделия или какой-либо ограниченной номенклатуры изделий, например, цехи редукторов, муфт, коробок передач и т.п. В этом случае детали и узлы распределяют по отдельным цехам или участкам цехов в зависимости от их массы, сложности, функционального назначения или других признаков. Установка и расположение оборудования на таких участках осуществляется по ходу технологического процесса изготовления определенных деталей или готовых изделий.

Машиностроительные предприятия в зависимости от степени их технологической специализации подразделяются на два вида.

1. Предприятия, полностью охватывающие все стадии процесса изготовления изделия. В состав такого предприятия входят основные предприятия по всем стадиям производственного процесса, начиная от заготовительных до сборочных включительно.

2. Предприятия, не полностью охватывающие все стадии изготовления изделия. В производственной структуре такого предприятия отсутствуют некоторые цехи, относящиеся к той или иной стадии основного производственного процесса. Такое предприятие может иметь только основные заготовительные цехи, выпускающие отливки, поковки или штамповки, поставляемые в порядке кооперации другим машиностроительным предприятиям; или же только сборочные цехи, выполняющие сборку изделий из деталей, узлов, поставляемых в порядке кооперации другими предприятиями; или только механообрабатывающие цехи, которые из заготовок, получаемых от других предприятий, изготовляют детали или узлы и передают их для окончательной сборки и испытания другим машиностроительным предприятиям.

Предприятия с неполной производственной структурой имеют обычно более высокой уровень технологической специализации, чем предприятия с полной производственной структурой. Рационально организованный технологический процесс изготовления изделия должен обеспечивать заданное качество продукции и производительность труда, а также ритмичность работы, стабильность качества во времени и выпуск продукции в требуемом объеме. При решении вопросов развития производства, его технического перевооружения и реконструкции особенно важно правильно определить наиболее перспективные объекты производства, потребность рынка в этих объектах как в ближайшее время, так и на длительную перспективу. Вся научно-техническая, производственная и сбытовая деятельность предприятия должна быть направлена на выпуск конкурентоспособных и пользующихся спросом изделий, в том числе и на мировом рынке.

3. Технологический процесс и его структура

Важнейшим элементом производственного процесса является технологический процесс. Технологическим процессом называют часть производственного процесса, содержащую целенаправленные действия по изменению и последующему определению состояния предмета труда. Под изменением состояния предмета труда понимают изменение его физических, механических, химических свойств, геометрических размеров, внешнего вида. В зависимости от содержания различают технологические процессы получения заготовок, изготовления деталей, сборки отдельных узлов и машины в целом, окраски машины и др. Последующее определение состояния предмета труда означает последовательный контроль производственного «изменения» предмета производства.

По последовательности выполнения различают технологические процессы изготовления исходных заготовок, их обработки и сборки изделий. В технологическом процессе изготовления заготовок происходит превращение материала в исходные заготовки деталей машин путем литья, обработки давлением, резки сортового проката, а также комбинированными методами. В результате технологического процесса обработки в определенной последовательности происходит непосредственное изменение состояния обрабатываемой заготовки, т.е. изменение ее размеров, формы или физико-механических свойств. При этом под обработкой понимают действие, направленное на изменение свойств предмета труда при выполнении технологического процесса.

К отдельным видам обработки можно отнести, например, обработку резанием, обработку давлением, термическую обработку, поверхностное упрочнение деталей и др. Совокупность значений параметров технологического процесса в определенном интервале времени называется технологическим режимом. При обработке резанием, например, параметрами технологического режима являются скорость резания, глубина резания и подача; при термической обработке ­ скорость нагрева, температура нагрева, длительность выдержки и скорость последующего охлаждения. Технологический процесс может осуществляться при наличии соответствующих орудий производства, называемых средствами технологического оснащения. При этом к технологическому оснащению относят технологическое оборудование и технологическую оснастку.

Технологическим оборудованием называют средства технологического оснащения, в которых для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическая оснастка. К технологическому оборудованию можно отнести, например, литейные машины, металлорежущие станки, нагревательные печи, гальванические ванны, ковочные молоты, испытательные стенды и т.д. Технологической оснасткой называют средства технологического оснащения, дополняющие технологическое оборудование для выполнения определенной части технологического процесса. К технологической оснастке относят режущий инструмент, штампы, приспособления, измерительные средства, модели, литейные формы и др.

Степень прогрессивности технологического процесса можно оценить качественными и количественными показателями. Качественный показатель прогрессивности технологического процесса характеризует его основную идею, технический метод реализации этой идеи, а также степень приближения реального технологического процесса к такой его модели, которая может быть разработана с учетом последних достижений науки и техники. С количественной стороны прогрессивность технологического процесса можно оценить системой показателей, основными из которых по ГОСТ 27782­88 являются коэффициент использования материала, расходный коэффициент, коэффициент раскроя материала. Коэффициент использования материала характеризует степень полезного расхода материала на производство изделия. Расходный коэффициент ­ это показатель, обратный коэффициенту использования материала. Коэффициент раскроя материала характеризует степень использования массы (площади, длины, объема) исходного материала при раскрое по отношению к массе (площади, длине, объему) всех видов полученных заготовок или деталей. Максимально допустимое плановое количество материала на изготовление изделия при установленном качестве и условиях производства составляет норму расхода материала на изделие.

В составе нормы расхода следует учитывать массу изделия (полезный расход материала), технологические отходы и потери материала. Отходы могут быть использованы в качестве исходного материала для производства других изделий или реализованы в качестве вторичного сырья. Потери материала характеризуют количество безвозвратно теряемого материала в процессе изготовления изделия. Массу технологических отходов и потерь материала регламентируют в технологической документации.

Ранее отмечалось, что производство машин на машиностроительных предприятиях осуществляется в результате выполнения комплекса взаимосвязанных технологических процессов, являющихся частями общего производственного процесса предприятия. Для выполнения технологического процесса создается рабочее место, представляющее собой участок производственной площади цеха, оборудованный в соответствии с выполняемой на нем работой. Рабочее место является элементарной единицей структуры предприятия, где размещены исполнители работы, обслуживаемое технологическое оборудование, часть конвейера, устройства для хранения заготовок и изделий, изготовленных на данном рабочем месте, а на ограниченное время ­ технологическая оснастка и предметы труда. Т

ехнологический процесс обычно расчленяется на части, называемые операциями. Технологической операцией называют законченную часть технологического процесса, выполняемую на одном рабочем месте. Операция охватывает все действия оборудования и рабочих над одним или несколькими совместно обрабатываемыми или собираемыми объектами производства. Так при обработке на станках операция включает все действия рабочего по управлению станком, а также автоматические движения станка, связанные с процессом обработки заготовки до момента снятия ее со станка и перехода к обработке другой заготовки. Число операций в технологическом процессе зависит от сложности конструкции детали или собираемого изделия и может изменяться в достаточно широких пределах.

К отдельным операциям обработки можно отнести, например, сверление, точение, фрезерование, развертывание, нарезание резьбы метчиком и др. Как видно, операция характеризуется неизменностью рабочего места, технологического оборудования, предмета труда и исполнителя. При изменении одного из этих условий имеет место новая операция. Однако изменение рабочего места не всегда является критерием законченности операции. Например, обработка на двух сверлильных станках-дублерах, где необходимо постоянное присутствие по одному рабочему возле каждого станка, означает наличие двух рабочих мест, но выполнение одной и той же операции, если на этих станках выполняется одна и та же обработка с одинаковой наладкой оборудования. В случае если черновая обработка детали, например, выполняется одним рабочим на одном станке, а чистовая – другим рабочим на другом станке, то здесь выполняется две операции. Если же и черновая и чистовая обработка выполняется на одном станке, то это будет одна операция. Точение вала, выполняемое последовательно сначала на одном конце, а затем после переустановки его в центрах ­ на другом, является одной операцией.

Следует заметить, что переход к обработке другой заготовки не означает начало новой операции. Заготовка может быть из одной партии с предыдущей. В этом случае операция одна и та же, но повторяется столько раз, сколько заготовок в партии. Поэтому основным критерием другой операции является переналадка станка, т.е. законченность процесса обработки. Необходимость деления технологического процесса на операции обусловлена в основном двумя факторами. Обычно обработать заготовку со всех сторон на одном рабочем месте невозможно. Кроме того, при построении технологического процесса по принципу дифференциации возникает необходимость разделения предварительной и окончательной механической обработки заготовки, поскольку между ними должна быть проведена термическая обработка. С другой стороны по экономическим соображениям нецелесообразно, например, создавать специальный и дорогостоящий станок, позволяющий совмещать на одном рабочем месте проведение многих способов механической обработки. В крупносерийном и массовом производстве при сборке большого числа одинаковых изделий расчленение сборочного процесса на отдельные операции и закрепление каждой из них за отдельным рабочим местом обусловливают узкую специализацию рабочих в выполнении операций, что обеспечивает более высокую производительность труда и позволяет использовать рабочих сравнительно невысокой квалификации.

Содержание операции определяется многими факторами и, прежде всего, факторами организационного и экономического характера. Диапазон работ, входящих в состав операции, может быть достаточно широк. Операцию может составлять обработка всего лишь одной поверхности на отдельном станке. Например, фрезерование шпоночной канавки на вертикально-фрезерном станке. Изготовление сложной корпусной детали на автоматической линии, состоящей из нескольких десятков станков и имеющей единую систему управления, является также операцией. Технологическая операция является основным элементом производственного планирования и учета. По операциям определяют трудоемкость процесса, необходимое оборудование, инструмент, приспособления, квалификацию рабочих. На каждую операцию составляется вся плановая, учетная и технологическая документация.

Операции, входящие в состав технологического процесса, выполняют в определенной последовательности. Содержание, состав и последовательность выполнения операций определяют структуру технологического процесса. Последовательность прохождения заготовки, детали или сборочной единицы по цехам и производственным участкам предприятия при выполнении технологического процесса изготовления или ремонта называют технологическим маршрутом. Структура операции предполагает расчленение ее на составные элементы ­ установы, позиции и переходы. Для обработки заготовки ее необходимо установить и закрепить в приспособлении, на столе станка или другом виде оборудования. При сборке то же самое следует проделать с деталью, к которой должны быть присоединены другие детали. Установ ­ часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемой сборочной единицы. При каждом повторном снятии заготовки и последующем ее закреплении на станке или же при повороте заготовки на какой-либо угол для обработки новой поверхности имеет место новый установ.

В зависимости от конструктивных особенностей изделия и содержания операции она может быть выполнена либо с одного, либо с нескольких установов. В технологической документации установы обозначаются буквами А, Б, В и т.д. Например, при обработке вала на фрезерно-центровальном станке фрезерование торцов вала с двух сторон и их зацентровку выполняют последовательно за один установ заготовки. Полная обработка заготовки вала на токарно-винторезном станке может быть осуществлена только с двух установов заготовки в центрах, так как после обработки заготовки с одной стороны (установ А) ее необходимо открепить, установить в новом положении (установ Б) для обработки с другой стороны. В случае поворота заготовки без снятия ее со станка необходимо указывать угол поворота: 45°, 60° и т.д.

Установленная и закрепленная заготовка в случае необходимости может изменять свое положение на станке относительно инструмента или рабочих органов станка под воздействием устройств линейных перемещений или поворотных устройств, занимая новую позицию. Позицией называется каждое отдельное фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. При обработке заготовки, например, на токарно-револьверном станке позицией будет каждое новое положение револьверной головки.

При обработке на многошпиндельных автоматах и полуавтоматах неизменно закрепленная заготовка занимает различные позиции относительно станка путем вращения стола, последовательно подводящего заготовку к разным инструментам. Технологический переход ­ законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установке. Технологический переход, таким образом, характеризует постоянство применяемого инструмента, поверхностей, образуемых обработкой или соединяемых при сборке, а также неизменность технологического режима. Например, технологическими переходами будут являться получение отверстия в заготовке при обработке спиральным сверлом, получение плоской поверхности детали фрезерованием и т.п. Последовательная обработка одного и того же отверстия в корпусе редуктора расточным резцом, зенкером и разверткой будет состоять соответственно из трех технологических переходов, поскольку при обработке каждым инструментом образуется новая поверхность.

В токарной операции, выполняются два технологических перехода. Такие переходы называют простыми, или элементарными. Совокупность переходов, когда в работе одновременно участвуют несколько инструментов, называют совмещенным переходом. При этом все инструменты работают с одинаковой подачей и при одинаковой частоте вращения заготовки. В случае, когда происходит изменение последовательно обрабатываемых поверхностей одним инструментом с изменением режимов резания (скорости при обработке на гидрокопировальных станках или скорости и подачи на станках с ЧПУ) при одном рабочем ходе инструмента, имеет место сложный переход. Технологические переходы при этом могут выполняться последовательно или параллельно-последовательно. При обработке заготовок на станках с ЧПУ несколько поверхностей могут последовательно обрабатываться одним инструментом (например, подрезным резцом) при его движении по траектории, задаваемой управляющей программой. В этом случае говорят, что указанная совокупность поверхностей обрабатывается в результате выполнения инструментального перехода.

Примерами технологических переходов в сборочных процессах могут служить работы, связанные с соединением отдельных деталей машины: приданием им требуемого относительного положения, проверкой достигнутого положения и его фиксацией с помощью крепежных деталей. При этом постановку каждой крепежной детали (например, винта, болта или гайки) следует рассматривать как отдельный технологический переход, а одновременное закручивание нескольких гаек с помощью многошпиндельного гайковерта ­ как совмещение технологических переходов. Технологическая операция в зависимости от организации технологического процесса может быть осуществлена на основе концентрации или дифференциации технологических переходов. При концентрации переходов структура операции включает максимально возможное при заданных условиях количество технологических переходов. Такая организация операции сокращает количество операций в технологическом процессе. В предельном случае технологический процесс может состоять лишь из одной технологической операции, включающей все переходы, необходимые для изготовления детали. При дифференциации переходов стремятся к уменьшению количества переходов, входящих в технологическую операцию.

Пределом дифференциации является такое построение технологического процесса, когда в состав каждой операции входит лишь один технологический переход. Характерной особенностью технологического перехода в любых процессах (кроме аппаратурных) является возможность его обособления на отдельном рабочем месте, т.е. выделение его в виде самостоятельной операции. В случае однопереходной операции понятие операции может совпадать с понятием перехода. При организации процесса обработки по принципу дифференциации построения операции (а не перехода) технологический процесс расчленяется на одно-, двух-переходные операции, подчиняющиеся по продолжительности такту выпуска. Если операции (например, зубофрезерная, шлицефрезерная) по длительности выходят за пределы такта выпуска, то ставят станки-дублеры. Следовательно, пределом дифференциации служит такт выпуска. Принцип концентрации операций подразделяется на принцип параллельной концентрации и последовательной. И в том и в другом случае в одной операции концентрируется большое количество технологических переходов, но они распределяются по позициям таким образом, чтобы время обработки на каждой операции было примерно равно или было меньше такта выпуска.

По наибольшему времени по позициям будет определяться норма времени на операцию. По принципу последовательной концентрации все переходы выполняются последовательно, а время обработки определяется суммарным временем по всем переходам. Технологический переход при обработке резанием может состоять из нескольких рабочих ходов. Под рабочим ходом понимают законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки. Количество рабочих ходов, выполняемых в одном технологическом переходе, выбирают, исходя из обеспечения оптимальных условий обработки, например уменьшения глубины резания при съеме значительных слоев материала. Примером рабочего хода на токарном станке является снятие резцом одного слоя стружки непрерывно, на строгальном ­ снятие одного слоя металла по всей поверхности, на сверлильном ­ сверление отверстия на заданную глубину. Рабочие ходы имеют место в тех случаях, когда величина припуска превышает возможную глубину резания и его приходится снимать за несколько рабочих ходов. При повторении одной и той же работы, например, сверление четырех одинаковых отверстий последовательно, имеет место один технологический переход, выполняемый за 4 рабочих хода; если же эти отверстия выполняются одновременно, то имеет место 4 совмещенных рабочих хода и один технологический переход. В состав операции входят также элементы, связанные с выполнением вспомогательных движений и необходимые для осуществления технологического процесса. К ним относятся вспомогательные переходы и приемы. Вспомогательный переход ­ законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров или свойств поверхности, но необходимы для выполнения технологического перехода.

К вспомогательным переходам относятся, например, закрепление заготовки на станке или в приспособлении, смена инструмента, перемещение инструмента между позициями и др. Для сборочных процессов вспомогательными могут считаться переходы по установке базирующей детали на сборочном стенде или в приспособлении на конвейере, перемещение к ней присоединяемых деталей и др. Для выполнения технологической операции необходимы также вспомогательные ходы и приемы. Вспомогательный ход ­ законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, необходимого для подготовки рабочего хода. Под приемом понимают законченную совокупность действий рабочего, применяемых при выполнении перехода или его части и объединенных одним целевым назначением. Например, вспомогательный переход «установить заготовку в приспособлении» состоит из следующих приемов: взять заготовку из тары, установить в приспособление, закрепить. Вспомогательные ходы и приемы учитываются при изучении затрат вспомогательного времени на выполнение операции. Любой технологический процесс протекает во времени. Интервал календарного времени от начала до конца какой-либо периодически повторяющейся технологической операции независимо от числа одновременно изготовляемых или ремонтируемых изделий называется циклом технологической операции.

Подготовку технологического оборудования и технологической оснастки к выполнению технологической операции называют наладкой. К наладке относятся установка приспособления, переключение скорости или подачи, настройка заданной температуры и т.д. Дополнительную регулировку технологического оборудования и (или) оснастки в процессе работы для восстановления достигнутых при наладке значений параметров называют подналадкой.

4. Типы производства и их характеристика

Машиностроительное производство характеризуется объемом выпуска, программой выпуска продукции, тактом выпуска. Объем выпуска продукции ­ это количество изделий определенных наименований, типоразмеров и исполнений, изготовляемых или ремонтируемых предприятием или его подразделением в течение планируемого периода времени (месяц, квартал, год). Объем выпуска в значительной степени определяет принципы построения технологического процесса. Установленный для данного предприятия перечень изготовляемых или ремонтируемых изделий с указанием объема выпуска и сроков выполнения по каждому наименованию на планируемый период времени называется программой выпуска продукции.

Тактом выпуска называется интервал времени, через который периодически производится выпуск изделий или заготовок определенных наименования, типоразмера и исполнения. Такт выпуска t, мин/шт., определяется по формуле t = 60 Фд/ N, где Фд ­ действительный фонд времени в планируемом периоде (месяц, сутки, смена), ч; N ­ производственная программа на этот же период, шт. Действительный фонд времени работы оборудования отличается от номинального (календарного) фонда времени, поскольку учитывает потери времени на ремонт оборудования. Действительный фонд работы оборудования в зависимости от его сложности и количества выходных и праздничных дней при 40­часовой рабочей неделе и при работе в две смены в машиностроительном производстве составляет от 3911 до 4029…4070 часов. Фонд времени рабочего при этом около 1820 ч.

В зависимости от производственных мощностей и возможностей сбыта продукции изделия на предприятии изготовляют в различных количествах ­ от единичных экземпляров, до сотен и тысяч штук. При этом все изделия, изготовленные по конструкторской и технологической документации без ее изменения, называются серией изделия. В зависимости от широты номенклатуры, регулярности, стабильности и объема выпуска изделий различают три основных типа производства: единичное, серийное и массовое. Каждому из этих типов присущи свои характерные особенности в организации труда и в структуре производственного и технологического процессов. Тип производства является классификационной категорией производства, выделяемой по признакам широты номенклатуры, регулярности, стабильности и объема выпуска продукции. В отличие от типа производства вид производства выделяется по признаку применяемого метода изготовления изделия. Примерами видов производства являются литейное, сварочное, механосборочное и др. Одной из основных характеристик типа производства является коэффициент закрепления операций Кз.о., представляющий собой отношение числа всех различных технологических операций ΣО, выполняемых или подлежащих выполнению в течение месяца, к числу рабочих мест ΣР: Кз.о. = ΣО/ΣР С расширением номенклатуры выпускаемых изделий и уменьшением их количества значение этого коэффициента увеличивается.

Единичное производство характеризуется малым объемом выпуска одинаковых изделий, повторное изготовление и ремонт которых, как правило, не предусматривается. При этом технологический процесс изготовления изделий либо совсем не повторяется, либо повторяется через неопределенные промежутки времени. По единичному типу производства выпускаются, например, крупные гидротурбины, прокатные станы, оборудование для химических и металлургических заводов, уникальные металлорежущие станки, опытные образцы машин в различных отраслях машиностроения, ремонтные цеха и участки и др.

Технология единичного производства характеризуется применением универсального металлорежущего оборудования, которое располагается в цехах обычно по групповому признаку, т.е. с разбивкой на участки токарных, фрезерных, шлифовальных станков и т.д. Обработку ведут стандартным режущим, а контроль ­ универсальным измерительным инструментом. Характерным признаком единичного производства является концентрация на рабочих местах разнообразных операций. При этом на одном станке часто производится полная обработка заготовок разнообразных конструкций и из различных материалов. Ввиду необходимости частой перенастройки и наладки станка на выполнение новой операции доля основного (технологического) времени в общей структуре нормы времени на обработку сравнительно невелика.

Отличительные особенности единичного производства обусловливают относительно низкую производительность труда и высокую себестоимость выпускаемых изделий. Серийное производство характеризуется изготовлением или ремонтом изделий периодически повторяющимися партиями. При серийном производстве одноименные или однотипные по конструкции изделия изготовляют по отработанным на технологичность чертежам. Продукцией серийного производства являются машины установившегося типа, выпускаемые в значительных количествах. К этой продукции можно отнести, например, металлорежущие станки, двигатели внутреннего сгорания, насосы, компрессоры, оборудование для пищевой промышленности и др. Серийное производство является наиболее распространенным в общем и среднем машиностроении.

В серийном производстве наряду с универсальным широко используется и специальное оборудование, автоматы и полуавтоматы, станки с ЧПУ, специальный режущий инструмент, специальные измерительные приборы и приспособления. В серийном производстве средняя квалификация рабочих обычно ниже, чем в единичном производстве. В зависимости от количества изделий в партии или серии и значения коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство. Такое подразделение является достаточно условным для различных отраслей машиностроения, так как при одном и том же количестве машин в серии, но различных размеров, сложности и трудоемкости производство может быть отнесено к разным типам. Условной границей между разновидностями серийного производства по ГОСТ 3.1108­74 является величина коэффициента закрепления операций Кз.о.: для мелкосерийного производства 20 < Кз.о.< 40, для среднесерийного ­ 10 < Кз.о.< 20, а для крупносерийного ­ 1 < Кз.о.< 10.

В мелкосерийном производстве, близком к единичному, оборудование располагается преимущественно по типам станков ­ участок токарных станков, участок фрезерных станков и т.д. Станки могут располагаться и по ходу технологического процесса, если обработка ведется по групповому технологическому процессу. Применяют главным образом универсальные средства технологического оснащения. Размер производственной партии обычно составляет несколько единиц. При этом производственной партией принято называть предметы труда одного наименования и типоразмера, запускаемые в обработку в течение определенного интервала времени, при одном и том же подготовительно-заключительном времени на операцию. В среднесерийном производстве, обычно называемом серийным, оборудование располагают в соответствии с последовательностью выполнения этапов обработки заготовок. За каждой единицей оборудования обычно закрепляют несколько технологических операций, при этом возникает необходимость переналадки оборудования. Размер производственной партии составляет от нескольких десятков до сотен деталей.

В крупносерийном производстве, близком к массовому, оборудование, как правило, располагается в последовательности технологического процесса для одной или нескольких деталей, требующих одинакового процесса обработки. При недостаточно большой программе выпуска изделий целесообразно обрабатывать заготовки партиями, с последовательным выполнением операций, т.е. после обработки всех заготовок партии на одной операции производят обработку этой партии на следующей операции. Заготовки после окончания обработки на одном станке транспортируют целой партией или по частям к другому, при этом в качестве транспортных средств используют рольганги, подвесные цепные конвейеры или роботы. Обработку заготовок выполняют на предварительно настроенных станках, в пределах технологических возможностей которых допустима переналадка для выполнения иных операций. В крупносерийном производстве используются, как правило, специальные приспособления и специальный режущий инструмент. В качестве измерительного инструмента широко используют предельные калибры (скобы, пробки, резьбовые кольца и резьбовые пробки) и шаблоны, позволяющие определять годность обработанных деталей и производить разбивку их на размерные группы в зависимости от величины поля допуска.

Серийное производство значительно экономичнее, чем единичное, так как лучше используется оборудование, ниже припуски, выше режимы резания, более высокая специализация рабочих мест, значительно сокращаются цикл производства, межоперационные заделы и незавершенное производство, более высокий уровень автоматизации производства, повышается производительность труда, резко снижается трудоемкость и себестоимость изделий, упрощается управление производством и организация труда. При этом под заделом понимают производственный запас заготовок или составных частей изделия для обеспечения бесперебойного выполнения технологического процесса. Этот тип производства является наиболее распространенным в общем и среднем машиностроении. Около 80 % продукции машиностроения выпускается серийно. Массовое производство характеризуется большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых продолжительное время, в течение которого на большинстве рабочих мест выполняется одна рабочая операция.

Детали, как правило, изготовляются из заготовок, производство которых ведется централизованно. Централизованным способом осуществляется производство нестандартного оборудования и технологической оснастки. Поставляют их своим потребителям цехи, являющиеся самостоятельной структурной единицей. Массовое производство экономически целесообразно при выпуске достаточно большого количества изделий, когда все материальные и трудовые затраты, связанные с переходом на массовое производство, достаточно быстро окупаются и себестоимость изделия ниже, чем при серийном производстве. Продукция массового производства ­ это изделия узкой номенклатуры, унифицированного или стандартного типа, выпускаемые для широкого сбыта потребителю. К этой продукции можно отнести, например, многие марки легковых автомобилей, мотоциклов, швейных машин, велосипедов и т.д.

В массовом производстве применяют высокопроизводительное технологическое оборудование ­ специальные, специализированные и агрегатные станки, многошпиндельные автоматы и полуавтоматы, автоматические линии. Широко применяется многолезвийный и наборный специальный режущий инструмент, предельные калибры, быстродействующие контрольные приспособления и приборы. Массовое производство характеризуется также установившимся объемом производства, что при значительной программе выпуска продукции обеспечивает возможность закрепления операций за определенным оборудованием. При этом производство изделий осуществляется по окончательно отработанной конструкторской и технологической документации. Наиболее совершенной формой организации массового производства является поточное производство, характеризуемое расположением средств технологического оснащения в последовательности выполнения операций технологического процесса и определенным тактом выпуска изделий. Для поточной формы организации технологического процесса требуется одинаковая или кратная производительность на всех операциях. Это позволяет производить обработку заготовок или собирать узлы без заделов в строго определенные промежутки времени, равные такту выпуска. Приведение длительности операций к указанному условию называют синхронизацией, что в некоторых случаях предусматривает использование дополнительного (дублирующего) оборудования. Для массового производства коэффициент закрепления операций Кз.о. = 1.

Основным элементом поточного производства является поточная линия, на которой расположены рабочие места. Для передачи предмета труда с одного рабочего места на другое применяют специальные транспортные средства. В поточной линии, являющейся основной формой организации труда поточного производства, на каждом рабочем месте выполняют одну технологическую операцию, а оборудование располагают по ходу технологического процесса (по потоку). Если длительность операции на всех рабочих местах одинакова, то работа на линии выполняется с непрерывной передачей объекта производства с одного рабочего места на другое (непрерывным потоком). Достигнуть равенства штучного времени на всех операциях обычно не удается. Это обусловливает технологически неизбежное различие загрузки оборудования по рабочим местам поточной линии. При значительных объемах выпуска в процессе синхронизации наиболее часто возникает необходимость уменьшения длительности операций. Это достигается за счет дифференциации и совмещения во времени переходов, входящих в состав технологических операций. В массовом и крупносерийном производствах при необходимости каждый из технологических переходов может быть выделен в отдельную операцию, если будет выполнено условие синхронизации. За время, равное такту выпуска, с поточной линии сходит единица продукции.

Производительность труда, соответствующая выделенному производственному участку (линии, участку, цеху), определяется ритмом выпуска. Ритм выпуска ­ это количество изделий или заготовок определенных наименований, типоразмеров и исполнений, выпускаемых в единицу времени. Обеспечение заданного ритма выпуска является важнейшей задачей при разработке технологического процесса массового и крупносерийного производства. Поточный метод работы обеспечивает значительное сокращение (в десятки раз) цикла производства, межоперационных заделов и незавершенного производства, возможность применения высокопроизводительного оборудования, снижения трудоемкости изготовления изделий, простоту управления производством. Дальнейшее совершенствование поточного производства привело к созданию автоматических линий, на которых все операции выполняют с установленным тактом на рабочих местах, оснащенных автоматическим оборудованием. Транспортирование предмета труда по позициям осуществляется также автоматически. Интервал календарного времени от начала до окончания процесса изготовления или ремонта изделия называют производственным циклом. Длительность производственного цикла и ритмичность работы предприятия в значительной степени зависят от организации всего производственного процесса, четкого управления производством и персоналом, своевременного снабжения предприятия сырьем, материалами, инструментом, запасными частями, комплектующими изделиями и другими средствами производства. Важное значение для ритмичности и экономичности работы предприятия имеет своевременная реализация изготовленной промышленной продукции. Следует отметить, что на одном предприятии и даже в одном цехе можно встретить сочетание различных типов производства.

Следовательно, тип производства предприятия или цеха в целом определяется по признаку преимущественного характера технологических процессов. Массовым можно назвать производство, если на большинстве рабочих мест выполняется одна постоянно повторяющаяся операция. Если на большинстве рабочих мест выполняется несколько периодически повторяющихся операций, то такое производство следует считать серийным. Отсутствие периодичности повторения операций на рабочих местах характеризует единичное производство. Кроме того, для каждого типа производства характерным является также соответствующая точность исходных заготовок, уровень отработанности конструкции деталей на технологичность, уровень автоматизации процесса, степень детализации описания технологического процесса и др. Все это влияет на производительность процесса и на себестоимость изготовляемых изделий. Планомерная проводимая унификация и стандартизация изделий машиностроения способствует специализации производства. Стандартизация приводит к сужению номенклатуры изделий при значительном увеличении программы их выпуска. Это позволяет шире применять поточные методы работы и автоматизацию производства. Характеристики производства отражаются в решениях, принимаемых при технологической подготовке производства.

Заключение

Основы организации производства. Под организацией производства понимают координацию и оптимизацию во времени и пространстве всех материальных и трудовых элементов производства с целью достижения в определенные сроки наибольшего производственного результата с наименьшими затратами. Следовательно, организация производства создает условия для наилучшего использования техники и людей в процессе производства, тем самым повышая его эффективность. На каждом промышленном предприятии имеются свои специфические задачи организации производства. Это могут быть, например, вопросы обеспечения сырьем, наилучшего использования рабочей силы, сырья, оборудования, улучшения ассортимента и качества выпускаемой продукции, освоение новых видов продукции и т.п. Поскольку на практике многие задачи организации производства решают технологии, то важно различать функции технологии и функции организации производства.

Технология определяет способы и варианты изготовления продукции. Функцией технологии является определение возможных типов оборудования и технологической оснастки для производства каждого вида продукции, а также оптимальных параметров технологического режима. Таким образом, технологии определяют, что нужно сделать с предметом труда и при помощи каких средств производства, чтобы превратить его в продукт с заданными свойствами. Функцией организации производства является определение конкретных значений параметров технологического процесса на основе анализа возможных вариантов и выбора наиболее эффективного в соответствии с целью и условиями производства. То есть организация производства определяет, как лучше сочетать предмет и орудия труда, а также сам труд, чтобы превратить предмет труда в продукт необходимых свойств с наименьшими затратами рабочей силы и средств производства.

Особенностями организации производства являются рассмотрение во взаимосвязи элементов производства и выбор таких методов и условий их использования, которые в наибольшей степени соответствуют цели производства. Многие вопросы организации производства рассматриваются совместно с технологией. Однако организация производства имеет и присущие только ей задачи. Это, в частности, углубление специализации, быстрая (гибкая) переориентация производства на другие виды продукции, обеспечение непрерывности и ритмичности производственного процесса, совершенствование форм организации производства и др. Кроме того, к задачам организации производства относятся сокращение длительности производственного цикла, бесперебойное снабжение сырьем, материалами, комплектующими изделиями, сбыт готовой продукции, снижение простоя оборудования и обеспечение оптимальной его загрузки, согласование всех звеньев производственного процесса и др.

Совокупность отделов и служб, занимающихся построением и координацией функционирования производственного процесса, называют организационной структурой предприятия. Экономическую эффективность производственной структуры можно оценить такими показателями, как состав и размер цехов, профиль и уровень их специализации, длительность производственного цикла, коэффициент застройки территории, себестоимость и прибыль. Основными факторами, определяющими тип, сложность и иерархичность (т.е. число уровней предприятия) организационной структуры предприятия, являются: масштаб производства и объем продаж; номенклатура выпускаемой продукции; сложность и уровень унификации продукции; степень развития инфраструктуры региона; международная интегрированность предприятия и др. В зависимости от рассмотренных факторов выбирается тип организационной структуры, предполагающий методы планирования работ производственным подразделениям и контроль их выполнения. Для количественного анализа структуры предприятия используются различные показатели, характеризующие объем выпуска продукции, соотношение между основными, вспомогательными и обслуживающими производствами, эффективность пространственного размещения предприятия, характер взаимосвязей между подразделениями, степень централизации отдельных производств и др. Анализ данных показателей позволяет определить пути создания рациональной структуры предприятия, которая должна обеспечивать максимальную возможность специализации цехов и участков, непрерывность и прямоточность производства, отсутствие дублирующих и чрезмерно раздробленных подразделений, возможность расширения и перепрофилирования производства без его остановки.

Список использованных источников

1. Клепиков, В. В. Технология машиностроения: Учебник / В. В. Клепиков, А. Н. Бодров. – М. : ФОРУМ: ИНФРА-М, 2004.
2. Черепахин, А. А. Технология обработки материалов: Учебник / А. А. Черепахин. – М. : Издательский центр «Академия», 2004. – 272 с.
3. Салтыков, В. А. Технологии машиностроения. Технологии заготовительного производства: Учебное пособие / В. А. Салтыков, Ю. М. Аносов, В. К. Федюкин. – СПб. : Изд-во Михайлова В.А., 2004. – 336 с.
4. Маслов, А. Р. Приспособления для металлообрабатывающего инструмента: Справочник, 2-е изд. исправ. и доп. – М. : Машиностроение, 2002. – 256 с.
5. Берлинер, Ю. И. Технология химического и нефтяного аппаратостроения / Ю. И. Берлинер, Ю. А. Балашов. – М. : Машиностроение, 1996. – 288 с.
6. Шишмараев, В. Ю. Машиностроительное производство: Учебник / В. Ю. Шишмараев, Т. И., Каспина. – М. : Издательский центр «Академия», 2004. – 352 с.
7. Аверченков, В. И. Технология машиностроения: Сборник задач и упражнений: Учеб. пособие / В. И. Аверченков, и др. – М. : Инфра-М, 2006. – 288 с.
8. Медведев, В. А. Технологические основы гибких производственных систем: Учебник / В. А. Медведев, В. П. Вороненко, В. Н. Брюханов. – М. : Высшая школа, 2009. – 255 с.
9. Типовые технологические процессы изготовления аппаратов химических производств. Атлас типовых технологических процессов и чертежей / под ред. А. Д. Никифорова. – М. : Машиностроение, 1989. – 244 с.
10. Ярушин, С. Г. Технологические процессы в машиностроении: учебник для бакалавров / С. Г. Ярушин. – М.: Юрайт, 2011. – 564 с.

Реферат на тему “Производственный и технологический процессы в машиностроении” обновлено: Июль 31, 2017 автором: Научные Статьи.Ру

Изготовление изделий на машиностроительных предприятиях осуществляется в результате производственного процесса.

Производственный процесс – это совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта выпускаемых изделий. Производственный процесс в машиностроении охватывает подготовку средств производства и организацию обслуживания рабочих мест; получение и хранение материалов и полуфабрикатов; все стадии изготовления деталей машин; сборку изделий; транспортирование материалов, заготовок, деталей, готовых изделий и их элементов; технический контроль на всех стадиях производства; упаковку готовой продукции и другие действия, связанные с изготовлением выпускаемых изделий.

Важнейшим этапом производственного процесса является технологи ческая подготовка производства (ТПП), основным элементом которой является технологический процесс (ТП).

Технологический процесс – это часть производственного процесса, содержащая целенаправленные действия по изменению и/или определению состояния предмета труда (заготовки или изделия). Различают ТП изготовления исходных заготовок, термической обработки, механической (и другой) обработки заготовок, сборки изделий.

В ТП изготовления заготовок происходит превращение материала в исходные заготовки деталей машин заданных размеров и конфигурации различными методами. В процессе термической обработки происходят структурные превращения материала заготовок, изменяющие его свойства. При механической обработке происходит последовательное изменение состояния исходной заготовки (ее геометрических форм, размеров и количества поверхностей) до получения готовой детали. ТП сборки связан с образованием разъемных и неразъемных соединений составных частей изделий.

Для осуществления любого ТП необходимо применение совокупности орудий производства, называемых средствами технологического оснаще ния (СТО) – это технологическое оборудование (литейные машины, прессы, металлорежущие станки, печи, испытательные стенды и т. д.) и тех нологическая оснастка (режущие инструменты, приспособления, штампы, мерители и т. д.).

ТП выполняют на рабочих местах. Рабочее место – участок производственной площади, оборудованный в соответствии с выполняемой нанем работой.

Технологической операцией называют законченную часть ТП, выполняемую на одном рабочем месте. Операция охватывает все действия СТО и рабочих над одним или несколькими совместно обрабатываемыми или собираемыми объектами производства. При обработке на станках операция включает все действия рабочего, а также автоматические действия станка до момента снятия заготовки со станка и перехода к обработке другой заготовки.

Кроме технологических различают и вспомогательные операции: транспортирование, контроль, маркирование и др.

При выполнении ТП на предприятии заготовка или сборочная единица последовательно проходит по цехам и производственным участкам в соответствии с выполняемыми операциями. Указанную последовательность называют технологическим маршрутом, который может быть внутрицеховым и межцеховым.

Технологический переход – законченная часть технологической операции, выполняемая одними и теми же СТО при постоянных технологических режимах (t , s , п и др.). Технологические переходы могут быть простыми (обработка одним инструментом) или сложными (в работе одновременно участвуют несколько инструментов).

При обработке заготовок на станках с ЧПУ несколько поверхностей могут последовательно обрабатываться одним инструментом. В этом случае говорят, что указанная совокупность поверхностей обрабатывается в результате выполнения инструментального перехода.

Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и/или оборудования, которые не сопровождаются изменением свойств предметов труда, но необходимы для выполнения технологического перехода (установка и закрепление заготовки, смена инструмента, изменение режимов обработки и др.).

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки.

Установ – часть технологической операции, выполняемая при неизменном закреплении обрабатываемой заготовки или сборочной единицы.

Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижных частей оборудования для выполнения определенной части операции. Смена позиций, выполняемая с помощью поворотных устройств и устройств линейных перемещений возможна, например, в технологических операциях, осуществляемых на оборудовании револьверного типа, агрегатных станках, автоматических линиях и т. д.

Рабочий прием – ручное действие рабочего по обслуживанию станка или агрегата, обеспечивающего выполнение технологического перехода или его части. Так, при выполнении вспомогательного перехода установки заготовки в приспособление необходимо последовательно выполнить следующие приемы: взять заготовку из тары, установить в приспособление и закрепить в нем.

Изготовление изделий машиностроения может быть осуществлено на основе единичного, типового или группового ТП. Единичный ТП проектируется и применяется для изготовления деталей одного наименования, типоразмера и исполнения, независимо от типа производства.

Типовой ТП характеризуется единством содержания и последовательности большинства технологических операций и переходов для группы изделий с общими конструктивными признаками. Типовой ТП используется либо как информационная основа при разработке рабочего ТП, либо как рабочий ТП при наличии всей необходимой информации для изготовления детали.

Групповой ТП используется для совместного изготовления или ремонта группы изделий различной конфигурации в конкретных условиях производства на специализированных рабочих местах. Принципиальное различие между типовыми и групповыми процессами заключается в следующем: типовая технология характеризуется общностью технологического маршрута, а групповая – общностью оборудования и оснастки, необходимых для выполнения определенной операции или полного изготовления детали.

По степени детализации ТП подразделяются на маршрутные, операционные и маршрутно-операционные.

В маршрутном ТП содержание операций излагается без указания переходов и режимов обработки.

Операционный ТП – это технологический процесс, выполняемый по документации, в которой содержание операций излагается с указанием переходов и режимов обработки.

Маршрутно-операционный ТП – это технологический процесс, выполняемый по документации, в которой содержание отдельных операций излагается без указания переходов и режимов обработки.

Анализ существующих и проектирование новых ТП должны выполняться с учетом типа организации производства, в которых они осуществляются. Различают три основных типа машиностроительного производства: массовое, серийное и единичное. В некоторых случаях серийное производство подразделяют на крупносерийное, среднесерийное и мелкосерийное. Основными факторами, определяющими тип организации производства в цехе, на участке, являются номенклатура изделий, программа выпуска и трудоемкость изготовления деталей.

Тип действующего производства определяется коэффициентом закреп ления операций

где О – число различных операций за один месяц;

Р – число рабочих мест, на которых выполняются различные операции.

Для массового производства
. Для крупносерийного производства
, для среднесерийного
, для мелкосерийного
. Для единичного производства
не регламентируется.

При проектировании процессов изготовления изделий серийность производства определяется по коэффициенту серийности

, (1.2)

где –такт выпуска изделий;

– среднее штучное время по операциям.

Такт выпуска – интервал времени, через который периодически производится выпуск изделий определенного наименования, типоразмера и исполнения, рассчитывается по формуле

, (1.3)

где действительный годовой фонд времени работы оборудо­вания за одну смену в часах;

т количество смен работы оборудования за сутки;

N годовая программа выпуска изделий, шт.

Для нахождения t ш.ср . необходимо либо выполнить нормирование по укрупненным нормам, либо использовать данные по трудоемкости существующей на производстве аналогичной детали.

Среднее штучное время рассчитывается по формуле

, (1.4)

где t ш. i штучное время i -й операции изготовления детали;

п число основных операций в маршруте.

По значению К с , рассчитанному по формуле (1.2), можно принять решение о типе производства. При К с ≤ 1 – массовое производство, 1 < К с ≤ 10 – крупносерийное, 10 < К с ≤ 20 – среднесерийное, 20 < К с ≤ 50 – мелкосерийное, К с > 50 – единичное производство.

Серийность производства оказывает существенное влияние на технологическую подготовку выпуска изделий.

В машиностроении применяют два метода работы: поточный и непоточный. Поточное производство характеризуется расположением СТО в последовательности выполнения операций ТП и определенным интервалом выпуска изделий (такта выпуска). В общем случае условием организации потока является кратность времени выполнения каждой операции такту выпуска, т.е. t ш. i / τ в = К (К = 1,2,3,...). Приведение длительности операций к указанному условию называют синхронизацией.

Производительность труда, соответствующая выделенному производственному участку (линии, цеху), определяется ритмом выпуска. Ритм выпуска – количество изделий определенного наименования, типоразмера и исполнения, выпускаемое в единицу времени. Обеспечение заданного ритма выпуска изделий при поточном методе работы в массовом и крупносерийном производстве является важнейшей задачей при проектировании ТП.

Организация производства по поточному методу обеспечивает повышение производительности труда, уменьшение производственного цикла и объема незавершенного производства, предусматривает применение высокопроизводительного оборудования и комплексной автоматизации изготовления деталей, включая термическую обработку, нанесение покрытий, мойку, контроль и т. п.

В серийном производстве заготовки перемещаются по рабочим местам партиями. Партией называют количество заготовок или деталей одного наименования и типоразмера, которые запускаются в производство или подаются на сборку.

Величина оптимальной партии рассчитывается по формуле

n = N К/Ф , (1.5)

где N годовая программа с запчастями, шт;

К число дней, на которые необходимо иметь запас деталей наскладе (2...10 дней);

Ф – число рабочих дней в году.

Станок, закончивший обработку партии заготовок переналаживают на другую операцию. Величина партии деталей зависит от номенклатуры изделий, от годовой программы, от срока заказа, длительности обработки и сборки, сложности, наличия материалов и других факторов. С учетом этих факторов расчетная величина партии может быть принята другой.

В серийном производстве для повышения загрузки оборудования применяют переменно-поточные (серийно-поточные) игрупповые линии. При переменно-поточной обработке за каждым станком линии закреплено выполнение нескольких операций для технологично и конструктивно однотипных деталей, которые обрабатывают попеременно. Приспособления переменно-поточных линий конструируют так, чтобы в них можно былоустанавливать всю закрепленную группу заготовок.

В групповых поточных линиях каждый станок выполняет операции разных технологических маршрутов. При переходе к обработке следующих деталей производится подналадка станка (смена цанги, фиксатора, сверла и т. п.), что дает возможность обрабатывать однотипные поверхности у группы заготовок.

Возможность использования поточного метода работы определяют ко эффициентом поточности К П сопоставлением среднего штучного времени t ш.ср. для основных операций с тактом выпуска деталей τ в :

. (1.6)

При коэффициенте поточности К П > 0,6 принимают поточный метод работы.

Непоточный метод производства характеризуется изготовлением деталей партиями на каждой операции; обрабатывающее оборудование устанавливается в цехе группами по типам станков (токарные, фрезерные, шлифовальные и т. д.); изделия собирают на стационарных приспособлениях. При непоточном методе производства требуется создание заделов, что удлиняет цикл производства.

Цикл производства – это период времени от начала до конца выполнения какого-либо повторяющегося технологического или производственного процесса. Сокращение цикла производства уменьшает межоперационные заделы, незавершенное производство и оборотные фонды, а оборачиваемость вложенных в производство средств значительно повышается.

Понятие «серия» касается количества машин, которые запускаются в производство одновременно или непрерывно в течение определенного интервала времени.

Важным принципом разработки технологического маршрута прохождения деталей по цехам завода служит принцип возможно большего сокращения технологического маршрута при наименьшем пробеге деталей между цехами.

Схема связей цехов завода средней величины показана на рис. 1.1 .

Как видно из схемы (рис. 1.1), по пути в сборочный цех заготовки и детали могут делать двойные пробеги между цехами. Проектируя последовательность обработки отдельных деталей внутри цеха, следует позаботиться о наименьшем пробеге деталей между операциями.

Структура механосборочного производства зависит от конструктивных и технологических особенностей изделий, типа производства и ряда других факторов. Изделия, выпускаемые заводами, распределяют по цехам по предметному, технологическому или смешанному признаку.

При организации цехов по предметному признаку за каждым из них закрепляют все детали определенного узла или изделия и их сборку. В этом случае все цеха являются механосборочными и включают механические и сборочные отделения (участки). При наличии нескольких механосборочных цехов, изготавливающих отдельные узлы, на заводе предусматривают цех общей сборки выпускаемых машин. Такая организация цехов характерна, как правило, для массового и крупносерийного типов производства.

При организации цехов по технологическому признаку детали разныхмашин и узлов группируют по сходному ТП. Такая форма организации характерна для единичного и серийного типов производства, так как здесь обычно не удается загрузить полностью оборудование деталями одного изделия. В цехах обрабатывают сходные детали независимо от того, к какому узлу или машине они относятся. Механообрабатывающее производство в этом случае разделяют на цехи по типу деталей и однородности ТП (например, цехи корпусных деталей, валов, зубчатых колес, метизов и т. д.). Сборочный цех выделяют в самостоятельный цех, в который поступают детали из различных цехов.

Организация цехов по смешанному признаку обычно встречается в серийном производстве при большой номенклатуре изделий. В этом случае для изготовления некоторых изделий цехи организуют по предметному признаку (например, цехи редукторов, электродвигателей, пылесосов и т. д.), а для остальной части изделий – по технологическому признаку.

Изготовление стандартных деталей обычно выделяют в отдельные цехи независимо от принятой схемы организации производства.

Унификация и стандартизация изделий машиностроения способствует специализации производства, сужению номенклатуры изделий и увеличению их выпуска, а это в свою очередь позволяет шире применять поточные методы и автоматизацию производства.

Технологические процессы в машиностроении Лекция 1 ВВЕДЕНИЕ Н. А. Денисова, доцент кафедры машиностроения, канд. пед. наук

План лекции 1 Краткая характеристика изучаемой дисциплины 2 Классификация технологических процессов 3 Основные понятия и определения

Краткая характеристика изучаемой дисциплины Технология – это наука о методах, с помощью которых можно реализовать производственный процесс с целью получения готового изделия с параметрами качества, обеспечивающими требуемые его эксплуатационные свойства. Частью производственного процесса применительно к машиностроению является технологический процесс, или определенная последовательность действий, необходимая для получения конструкционных материалов, заготовок, деталей, комплектов, агрегатов и машин в целом с заданными параметрами качества l

Краткая характеристика изучаемой дисциплины l Цель изучения дисциплины – освоить терминологию и методологию, используемые при проектировании технологических и производственных процессов в машиностроении, а также при их реализации на производственных предприятиях.

Классификация технологических процессов Технологические процессы классифицируют по четырем признакам: l Формообразование l Параметры качества l Производительность изготовления изделий или партии изделий l Себестоимость изготовления изделий.

Классификация технологических процессов По признаку «Формообразование» вся технология конструкционных материалов делится на этапы – переделы: l l Металлургия (производство металлов и сплавов) Производство заготовок (литье, обработка давлением, сварка, методы порошковой металлургии) Механическая обработка (методы резания, поверхностное пластическое деформирование) Сборочное производство (создание подвижных и неподвижных соединений деталей механическими, электрическими способами, сваркой…)

Классификация технологических процессов Признак «Параметры качества» характеризуется группами качества, в числе которых: химический состав l структура и физико-механические свойства основного объема заготовки или детали и их поверхностных слоев l геометрическая форма l точность размеров, формы и взаимного расположения поверхностей l микрогеометрия поверхности l

Классификация технологических процессов l Признак «Производительность изготовления изделий или партии изделий» характеризуется временем, необходимым для изготовления изделия или партии изделий l Характеристикой признака «Себестоимость изготовления изделия» являются суммарные затраты на изготовление одного изделия.

Технологический процесс l Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда l Технологический процесс – это совокупность методов обработки: изготовления, изменения состояния, свойств, формы, сырья, материалов, – осуществляемых в процессе производства продукции

Основные понятия и определения Термин Определение ОБЩИЕ ПОНЯТИЯ 1. Технологический процесс Процесс D. Technologischer Prozeß Fertigungsablauf Е. Manufacturing process F. Precédé de fabrication 2. Технологическая операция Операция D. Operation; Arbeitsgang Е. Operation F. Opération Часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Примечания: 1. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования и сборки. 2. К предметам труда относятся заготовки и изделия. Законченная часть технологического выполняемая на одном рабочем месте процесса,

Основные понятия и определения 3. Технологический метод Метод 4. Технологическая база D. Technologische Basis 5. Обрабатываемая поверхность D. Zu bearbeitende Fläche Совокупность правил, определяющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, перемещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, установленных безотносительно к наименованию, типоразмеру или исполнению изделия Поверхность, сочетание поверхностей, ось или точка, используемые для определения положения предмета труда в процессе изготовления. Примечание. Поверхность, сочетание поверхностей, ось или точка принадлежат предмету труда. Поверхность, подлежащая обработки. воздействию в процессе

Основные понятия и определения 6. Технологический документ Документ D. Technologisches Dokument 7. Оформление технологического документа Оформление документа Графический или текстовый документ, который отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия Комплекс процедур, необходимых для подготовки и утверждения технологического документа в соответствии с порядком, установленным на предприятии. Примечание. К подготовке документа относится его подписание, согласование и т. д.

Основные понятия и определения 97. Материал Исходный предмет труда, изготовления изделия потребляемый для 98. Основной материал D. Grundmaterial E. Basic material F. Matière première Материал исходной заготовки. Примечание. К основному материалу относится материал, масса которого входит в массу изделия при выполнении технологического процесса, например материал сварочного электрода, припоя и т. д. 99. Вспомогательный материал D. Hilfsmaterial E. Auxiliary material F. Matière auxiliaire Материал, расходуемый при выполнении технологического процесса дополнительно к основному материалу. Примечание. Вспомогательными могут быть материалы, расходуемые при нанесении покрытия, пропитке, сварке (например, аргон), пайке (например, канифоль), закалке и т. д.

Основные понятия и определения 100. Полуфабрикат D. Halbzeug E. Semi-finished product F. Demi-produit Предмет труда, подлежащий дальнейшей обработке на предприятии-потребителе 101. Заготовка D. Rohteil E. Blank F. Ebauche Предмет труда, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь 102. Исходная заготовка D. Anfangs-Rohteil E. Primary blank F. Ebauche première Заготовка перед первой технологической операцией 103. Листоштампованное изделие Деталь или заготовка, изготовленная методом листовой штамповки

Основные понятия и определения (Измененная редакция, Поправка, ИУС 6 -91) 104. Отливка D. Gußstück E. Casting 105. Поковка D. Schmiedestück E. Forging Изделие или заготовка, полученные технологическим методом литья Изделие или заготовка, полученные технологическими методами ковки, объемной штамповки или вальцовки. Примечания: 1. Кованая поковка - поковка, полученная технологическим методом ковки. 2. Штампованная поковка - поковка, полученная технологическим методом объемной штамповки. 3. Вальцованная поковка - поковка, полученная технологическим методом вальцовки из сортового проката. (Измененная редакция, Поправка, ИУС 6 -91) 106. Изделие По ГОСТ 15895 -77

Основные понятия и определения 107. Комплектующее изделие Изделие предприятия-поставщика, применяемое как составная часть изделия, выпускаемого предприятиемизготовителем. Примечание. Составными частями изделия могут быть детали и сборочные единицы 108. Типовое изделие D. Typenwerkstück Е. Typified workpiece F. Pièce type Изделие, принадлежащее к группе изделий близкой конструкции, обладающее наибольшим количеством конструктивных и технологических признаков этой группы 109. Сборочный комплект D. Montagesatz E. Assembly set F. Jeu de montage Группа составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части

ИСПОЛЬЗУЕМЫЕ ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ ГОСТ 3. 1109 -82 Термины и определения основных понятий Гоцеридзе, Р. М. Процессы формообразования и инструменты: учебник для студ. учреждений сред. проф. образования / Р. М. Гоцеридзе. – М. : Издательский центр «Академия» , 2007. – 384 с. 3. Материаловедение и технология конструкционных материалов: учебник для студ. в. учеб. заведений / В. Б. Арзамасов, А. Н. Волчков, В. А. Головин и др. ; под ред. В. Б. Арзамасова, А. А. Черепахина. – М. : Издательский центр «Академия» , 2007. – 448 с. 4. Основы механосборочного производства: Учебное пособие для машиностр. спец. вузов А. Г. Схиртладзе, В. Г. Осетров, Т. Н. Иванова, Г. Н. Главатских. – М: ИЦ МГТУ «Станкин» , 2004. – 239 с. 5. Схиртладзе, А. Г. Проектирование нестандартного оборудования: учебник / А. Г. Схиртладзе, С. Г. Ярушин. – М. : Новое знание, 2006. – 424 с. 1. 2.